Activation of the Si–B Interelement Bond: Mechanism, Catalysis, and Synthesis

Martin Oestreich,* Eduard Hartmann, and Marius Mewald

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany

CONTENTS
1. Introduction A
2. Preparation of Si–B Compounds B
3. Mechanisms of Si–B Bond Activation D
4. Functionalization of Unsaturated Compounds E
4.1. 1,2-Addition to Isolated C–C Multiple Bonds E
4.1.1. Alkynes E
4.1.2. Alkenes I
4.2. 1,2-, 1,4-, and 1,n-Addition to C–C Multiple-Bond Systems K
4.2.1. 1,3- and 1,6-Dienes K
4.2.2. 1,7-Diynes and 1,3- and 1,6-Enynes N
4.2.3. Allenes O
4.3. 1,2-Addition to C–Het Double Bonds R
4.3.1. Aldehydes R
4.3.2. Imines S
4.3.3. Carbon Dioxide S
4.4. 1,4-Addition to α,β-Unsaturated Carbonyl and Carboxyl Compounds T
4.5. Allylic and Propargylic Substitution X
4.5.1. Allylic Precursors X
4.5.2. Propargylic Precursors Y
4.6. Dearomatization of Pyridines and Pyrazine Z
5. Functionalization of Strained-Ring Compounds AA
5.1. Methylene cyclopropanes AA
5.2. Vinylcyclopropanes and Vinylcyclobutanes AD
5.3. Biphenylene AE
6. (2 + 2 + 1)- and (4 + 1)-Cycloadditions of Multiple-Bond Systems AD
7. Functionalization of Carbenoids and Related Compounds AE
7.1. Carbenoids AG
7.2. Isonitriles AH
8. Summary AK

Received: August 20, 2012

1. INTRODUCTION

Synthetic chemistry is almost unimaginable without three main group elements, namely, boron, silicon, and tin. When attached to a carbon atom of any hybridization, these functional groups serve as exceptionally versatile linchpins in synthesis, selectively transforming into an enormous breadth of C–C and C–Het bonds. Areas such as cross-coupling or classes of reagents such as allylic and propargylic/allenylic metals are largely dominated by these main group elements. The main group element-functionalized intermediate is, however, usually the vehicle to arrive at a target molecule without any of these heteroatoms. Nevertheless, methods for the formation of bonds between carbon and main group elements, i.e., accessing main group element-based compounds, are likewise essential to the overall development of the field.

Interelement compounds, that is, compounds containing an interelement bond,1 are attractive main group element precursors as these provide the opportunity to transfer both bonding partners to an unsaturated substrate. All six possible combinations of these three elements are known (Figure 1) and are applied to the functionalization of unsaturated compounds.2–6 Out of these, the Si–B bond displays several attractive features.4,5 It is sufficiently stable with appropriate substitution at the boron atom (cf. section 2), and the electronegativity difference of boron and silicon allows for chemo-directive activation of the Si–B bond (cf. section 3). Also, distinct reactivities of the boryl and silyl groups are likely to enable their sequential introduction into a carbon skeleton with high levels of regiocontrol. The incredibly diverse...
chemistry of Si–B compounds is currently witnessing tremendous growth, and that is now documented by dozens of stereoselective C–Si/C–B and C–Si bond-forming reactions (cf. sections 4–7).

Si–B chemistry initially belonged to inorganic chemistry, and the majority of work on the preparation of Si–B compounds was done by Heinrich Nöth at the Universität München in Germany. It was his group that identified and understood parameters that lend stabilization to the Si–B bond, and the Nöth group elaborated several procedures that later became standard. Aside from a seminal report by John Buynak from the Southern Methodist University in Dallas/Texas, applications of Si–B compounds were extensively investigated by several groups from Kyoto University in Japan. Masaki Shimizu and Tamejiro Hiyama developed transition metal-free stoichiometric reactions, and Michinori Suginome (now together with Tochimichi Ohmura) and the late Yoshihiko Ito introduced transition metal-catalyzed reactions and shaped the field into what it is today. The name of Masato Tanaka must also be mentioned for his early contributions. Our laboratory, previously at the Universität Münster and now at the Technische Universität Berlin, further advanced the field by the development of catalytic Si–B activation by transition metal–alkoxide/hydroxide complexes. We summarize here all known methods to prepare Si–B compounds (silylboronic esters and silylboranes) and present the different modes of Si–B activation. The major portion of this review provides a comprehensive survey of applications, including (tentative) reaction mechanisms, many of which have now been verified by quantum-chemical calculations.

2. PREPARATION OF SI–B COMPOUNDS

Decades before Si–B compounds found their way into synthetic organic chemistry, i.e., the functionalization of unsaturated C–C and, to a lesser extent, C–Het bonds, the focus had been on the formation of this interelement linkage as well as on its chemical stability. As long as a half century ago, the laboratories of Seyferth\(^7\) (upper) and Ryschkewitsch\(^8\) (lower) independently reported the preparation of borazines containing three Si–B bonds (1 \(\rightarrow\) 2 and 3 \(\rightarrow\) 4, Scheme 1). The Si–B bond was formed by displacement of a B–Cl bond using a silicon alkali metal nucleophile. The “trimeric” borazines were of no synthetic use but provided the idea of a stable Si–B bond at a boron atom that is \(\pi\) -stabilized by an adjacent nitrogen atom.\(^9\) It was the laboratory of Nöth that shortly thereafter began a systematic investigation of the elementary chemistry of “monomeric” Si–B compounds.\(^{10,11}\) By analogy, these authors showed that Ph\(_3\)Si–B(NMe\(_2\))\(_2\) is accessible in good chemical yield from an amino-substituted chloroborane and a metalated silane (5 \(\rightarrow\) 9, Scheme 2). The reaction is seminal in the sense that it has become (with other substituents at the silicon and nitrogen atoms) a practical entry into the preparation of several often used Si–B compounds through ligand exchange\(^{10b}\) at the boron atom. Variation of the substituents at the boron atom further verified that electronic shielding of the boron atom by the nitrogen lone pair(s) is essential (Scheme 2).\(^{10}\) With only alkyl groups at the boron atom as in Ph\(_3\)Si–BBu\(_2\) (11), the borane is not stable.\(^{10}\) However, Birot, Pilott, and co-workers recently accomplished the preparation of sterically shielded silicon-substituted boranes with mesityl groups attached to the boron atom (13 \(\rightarrow\) 14–18, Scheme 3).\(^7\)

The nucleophilic substitution of electronically or sterically shielded haloboranes with an appropriate silicon nucleophile (generating lithium or potassium halides) had already emerged

Scheme 1. Borazines with Si–B Bonds

Scheme 2. “Monomeric” Si–B Compounds with Electronically Shielded Boron Atom

Scheme 3. “Monomeric” Si–B Compounds with Sterically Shielded Boron Atom
as a reliable method to make a Si–B bond at that time, but, aside from a handful of scattered reports, the chemistry of Si–B compounds lay dormant for almost two decades. Another paper by Nöth and co-workers then disclosed that ligand exchange at the boron atom of nitrogen-stabilized Me₃Si–B(NMe₂)₂ (19) is a convenient way of making 1,3,2-diazaborolidines and 1,3,2-dioxaborolanes, respectively (not shown). By this, Nöth developed the fundamental procedures for the practical synthesis of stable Si–B compounds with nitrogen and oxygen substituents at the boron atom, yet there was no use of these compounds as reagents. A few years later, Buyuk and Geng published an, in hindsight, truly visionary paper on the preparation of various oxygen-substituted Si–B reagents (Scheme 4, upper) combined with diverse applications in uncatalyzed and transition metal-catalyzed reactions with unsaturated compounds. It even included an attempt to make a chiral Si–B reagent from (+)-DIP-Chloride (vide infra). Nöth-type Me₃PhSi–B(NEt₂)₂ (21) accessible in high yield from 20 was transformed into either Me₃PhSi–Beg (22) in one step (21 → 22) or Me₃PhSi–Bcat (24) in two steps (21 → 23 → 24). As part of the seminal use of Si–B reagents in palladium(0) and platinum(0) catalysis, Ito and co-workers then introduced Me₃PhSi–Bpin (25), which was also prepared from Me₃PhSi–B(NEt₂)₂ (21) in analogy to the synthesis of Me₃PhSi–Beg (22) (21 → 25, Scheme 4, lower). The new Bpin group quickly superseded both Beg and Bcat in transition metal catalysis because of its improved stability toward hydrolysis during product purification.

Nöth's group had already reported cyclic nitrogen-substituted boranes 26 and 27 when Tanaka and co-workers used cognate 28 in palladium(0) catalysis (Figure 2, left). The preparation of benzannulated 29 was also described by Habereder and Nöth several years later (Figure 2, right).

Ligand exchange at the boron atom was also the method of choice for the synthesis of a family of chiral 1,3,2-dioxaborolanes and -borinanes (23 → 30–34, Scheme 5).

Scheme 4. Extension of the Substitution Pattern to 1,3,2-Dioxaborolanes

According to Buyuk's protocol, chiral diols were reacted with Me₃PhSi–BCl(NEt₂) (23) rather than Me₃PhSi–B(NEt₂)₂ (21). No yields were reported except for Me₃PhSi–Bpnd* (−−−−34).

The aforementioned superiority of Me₃PhSi–Bpin (25) in synthetic transformations prompted Suginome, Ito, and co-workers to explore new procedures for its preparation (cf. Scheme 4, lower). Instead of ligand exchange at the boron atom, direct nucleophilic displacement of hydride (35 → 25, upper) or alkoxides (36 → 25, 38, or 39 and 37 → 25, lower) at X–Bpin was investigated (Scheme 6). The former afforded 25 in remarkably good yield, knowing that previous attempts directly using boranes (not boronic esters) had failed due to disproportionation reactions. The latter is more general and

Scheme 5. Chiral 1,3,2-Dioxaborolanes and -Borinanes with a Si–B Bond

Scheme 6. Alternative Routes to Silicon-Substituted Bpin Derivatives
allowed for the installation of different triorganosilyl groups in reasonable yields.

Summarized in a recent full account, Suginome and co-workers elaborated the syntheses of several XR₂Si−Bpin compounds with heteroatom functionalization at the silicon atom. Following the established route to Si−B reagents, the amino-substituted silicon moiety was introduced by nucleophilic substitution at the boron atom employing the metalated Tamao silane (Scheme 7, upper). The amino group was easily replaced by a chloro substituent upon treatment with hydrochloric acid (Scheme 7, lower). The Si−Cl bond in 42 then served as a linchpin to form Si−F (as in 43), Si−N (as in 44−47), and Si−O bonds (as in 48−51) in reasonable yields. The upper and lower sequences complement one another, arriving at ClPh₂Si−Bpin (41) and XMe₂Si−Bpin, respectively.²³

Suginome, Murakami, and co-workers also succeeded in the preparation of Si−B reagents with endocyclic Si−B bonds (Scheme 8).₂⁶ The cyclization precursors were available through hydroboration of allylic silanes (52 → 54 and 53 → 55), followed by installation of an amino group at the boron atom (54 → 56 and 55 → 57). Reductive intramolecular coupling of the chlorosilane and chloroborane groups using sodium−potassium alloy then formed the Si−B bond (56 → 58 and 57 → 59). That strategy traces back to the early work of Nöth where such reductive couplings were even accomplished in intermolecular cases with all-alkyl-substituted chlorosilanes.¹⁰b

Recently, the Hartwig group reported a transition metal-catalyzed Si−B bond formation (60 → 61−65, Scheme 9).²⁷ The advantage of the new method is that silanes not substituted with an aryl group participate in the Si−H bond activation. Procedures involving metalated silanes usually require one aryl group at the silicon atom to allow for reductive metalation of the chlorosilane precursor. Berry and co-workers had reported a metal-mediated Si−B bond formation many years ago (not shown).²⁸ Silylene-insertion reactions as well as disilene functionalization are beyond the scope of this review.

3. MECHANISMS OF SI−B Bond Activation

The mechanisms of Si−B bond activation are diverse, ranging from oxidative addition/reductive elimination transition metal catalyses over stoichiometric and catalytic transmetalation processes to photochemical homolytic cleavage. This section is organized according to the prevalence of these mechanisms in synthetic transformations rather than providing a chronological listing. The discovery by Ito and co-workers and also Tanaka and co-workers that the Si−B bond oxidatively adds to various low-valent transition metals (I → II with TM = platinum(0), palladium(0), and nickel(0); Scheme 10, upper) more than a decade ago marked the beginning of the rich synthetic chemistry of Si−B compounds. These authors found that, subsequent to oxidative addition, migratory insertion of C−C multiple bonds occurs at the stage of intermediate II (C−B bond formation) with reductive elimination closing a catalytic cycle (C−Si bond formation). By this, both main group elements are incorporated into the carbon skeleton in a regiocontrolled and stereoselective fashion. A recent report by Suginome and co-workers where a leaving group at the silicon atom of the Si−B reagent allows for β-elimination with the boron fragment at the palladium atom in

Scheme 7. Functionalized Silicon-Substituted Bpin Compounds

Scheme 8. Nöth-Type Si−B Compound with an Endocyclic Si−B Bond

Scheme 9. Iridium-Catalyzed Si−H Bond Boration
complex IV significantly advanced the oxidative addition approach. A transition metal-stabilized silylene, i.e., a silylene transfer reagent, is thereby catalytically generated in a convenient way (III → IV → VI with TM = palladium(0), Scheme 10, lower).

The obvious method to chemoselectively cleave the Si–B bond is by the addition of a strong nucleophile that would attack at the more Lewis acidic boron atom. That had not been investigated until a decade ago when Kawachi, Minamimoto, and Tamao disclosed the stoichiometric boron–metal exchange at silicon with either alkoxides or carbanions (I → VIII with M = K or I → X with M = Li or MgX2, Scheme 11, upper).32

Another well-investigated transformation is the activation of alkynes with Si–B reagents marked the beginning of the research area. Ito and co-workers16 and, shortly thereafter, Tanaka and co-workers17 reported the regioselective silylation of terminal alkynes. Already in their initial report, the former authors tested the influence of the Si–B reagent as well as the low-valent transition metal.16a It was found that palladium–isocyanide complexes were superior to palladium–phosphine complexes (and Wilkinson’s catalyst). (Ph3P)4Pt also afforded promising regioselectivity and yield. The robustness of the Bpin group during purification had already been realized at this early stage, and Me2PhSi–Bpin (25) then quickly became the standard Si–B reagent. Several terminal alkynes with various functional groups in the alkyl chain reacted with high levels of regio- and diastereoselectivity (Scheme 15, upper).18 Without exception, the boryl group is joined to the terminal carbon atom whereas the silyl group is connected to the internal carbon atom. Moreover, E/Z ratios were excellent

4. FUNCTIONALIZATION OF UNSATURATED COMPOUNDS

Si–B bond activation applied to the functionalization of C–C multiple bonds is probably most extensively examined. Its diverse facets encompass control of chemo-, regio-, and stereoselectivity, often all at the same time in a single transformation. As illustrated in the following sections, seemingly minor changes in the catalytic system result in totally different reaction outcomes. These subtle effects have not always been predictable but are now reliable methods for the selective formation of C–Si and C–B bonds.

4.1. 1,2-Addition to Isolated C–C Multiple Bonds

4.1.1. Alkynes. Transition metal-catalyzed functionalization of alkynes with Si–B reagents marked the beginning of the research area. Ito and co-workers16 and, shortly thereafter, Tanaka and co-workers17 reported the regioselective silylation of terminal alkynes. Already in their initial report, the former authors tested the influence of the Si–B reagent as well as the low-valent transition metal.16a It was found that palladium–isocyanide complexes were superior to palladium–phosphine complexes (and Wilkinson’s catalyst). (Ph3P)4Pt also afforded promising regioselectivity and yield. The robustness of the Bpin group during purification had already been realized at this early stage, and Me2PhSi–Bpin (25) then quickly became the standard Si–B reagent. Several terminal alkynes with various functional groups in the alkyl chain reacted with high levels of regio- and diastereoselectivity (Scheme 15, upper).18 Without exception, the boryl group is joined to the terminal carbon atom whereas the silyl group is connected to the internal carbon atom. Moreover, E/Z ratios were excellent
for almost all alkynes, and \(Z \) configuration was major, corresponding to a formal syn-addition of the Si–B bond across the C–C triple bond. The catalysis also works with Me\(_2\)PhSi–Bcat (24) and Me\(_2\)PhSi–B(NEt\(_2\))\(_2\) (21) in comparable yields, again with high regioselectivity.\(^{16a}\) The group of Tanaka introduced the palladium–epo system in combination with Me\(_2\)PhSi–Bdmeda (28) in the regioselective silaboration of terminal alkynes (Scheme 15, center).\(^{17}\) The palladium–epo system was later employed by Birot, Pillot, and co-workers in the 1,2-addition of not heteroatom-stabilized MePh\(_2\)Si–BMes\(_2\) (17) across phenylacetylene (66\(_h\) \(\rightarrow\) \(Z\)-69\(_h\), Scheme 15, lower).\(^{12b}\)

Suginome, Murakami, and co-workers extended this methodology to cyclic 58 with an endocyclic Si–B bond, and reactions with terminal and internal alkynes were regioselective (66\(_a\) \(\rightarrow\) 70\(_a\) and 71\(_a\) \(\rightarrow\) 72\(_a\), Scheme 16).\(^{26}\) Both palladium(0) catalysts furnished the heterocycles 70\(_a\) and 72\(_a\) with the boron and silicon atoms embedded into a seven-membered ring. The connectivities were in agreement with previous findings, with the boron atom attached to the less-hindered C(sp\(^2\)) atom.

A remarkable effect was recently reported by the Suginome group.\(^{38}\) It was found that, for almost all \(R \) groups, double-bond isomerization from \(Z \) to \(E \) occurs with excess of chloro-substituted ClMe\(_2\)Si–Bpin (42) (66 \(\rightarrow\) E-73, Scheme 17, right column). However, the isomerization also depends on the presence of isopropanol/pyridine, initially added to transform the chlorosilane into the more stable silyloxy group. Preliminary control experiments verified that 42, the palladium catalyst, and isopropanol are involved; the equilibration of \(Z \) to \(E \) isomers would not begin until the addition of isopropanol/pyridine. The position of the equilibrium was dependent on the steric demand of the \(R \) substituent, and with bulky Cy and tBu groups, quantitative isomerization into \(E \) configuration was prevented. Not surprisingly, conventional \(Z \) selectivity was obtained with excess alkyne (66 \(\rightarrow\) Z-73, Scheme 17, left column). The details of the mechanism have, however, not been delineated yet.\(^{38}\)

Aside from the control of the alkene geometry, Ohmura, Suginome, and co-workers also succeeded in controlling the regioselectivity (Scheme 18).\(^{39}\) As documented by the above examples, the boryl group is transferred to the alkyne terminus in the palladium(0)-catalyzed reaction with Me\(_2\)PhSi–Bpin (25) when simple phosphine ligands such as Ph\(_3\)P are used (66\(_a\) \(\rightarrow\) Z-67\(_a\), normal regioselectivity). Conversely, the employment of the bulky phosphine (biphenyl-2-yl)Ph\(_2\)P (L1) reversed the regioselectivity completely to yield abnormal regioselectivity (66\(_a\) \(\rightarrow\) Z-74\(_a\)). The ligand effect was investigated in detail in addition reactions of ClMe\(_2\)Si–Bpin (42) to various terminal alkynes (Scheme 19).\(^{39}\) The mechanism was probed in a series of experiments (cf. Scheme 50 in section 4.2.2), and the order of bond-forming events was also investigated by quantum-chemical calculations (cf. Scheme 54 in section 4.2.3). These data suggested that C–B bond formation occurs prior to the formation of the C–Si bond. Hence, the steric bulk of the phosphine accounts for the observed switch of the regioselectivity in a ligand-controlled regioselective alkyne insertion into the Pd–B bond. Moreover,
the authors provided experimental evidence that the migratory insertion is reversible (not shown).39

A useful extension of this reaction was reported by the same authors.40 The 1,2-difunctionalized alkenes obtained from the palladium(0) catalysis with abnormal regioselectivity were selectively converted into either E- or Z-configured β-borated allylic silanes in a palladium(0)-catalyzed double-bond migration reaction (Scheme 20). The stereochemistry of the newly formed double bond could be controlled by additives.

Scheme 20. Stereoselective Double-Bond Migration in 1,2-Difunctionalized Alkenes

Use of an additional equivalent of the phosphine based on (tBu3P)2Pd favored E-alkene geometry (Z-75 → E-76, kinetic products), whereas the addition of catalytic amounts of an aryl bromide resulted in preferential formation of the Z-alkenes (Z-75 → Z-76, thermodynamic products). The additional phosphine ligand was believed to retard double-bond migration as well as alkene isomerization; the complex formed in the presence of an aryl bromide additive was found to accelerate both events. Remarkably, application of these protocols to 1,2-difunctionalized alkenes formed with normal regioselectivity just resulted in isomerization but not migration, favoring E geometry (not shown).

A few examples of internal alkynes were also reported (Scheme 21).16 That usually brings about regioselectivity issues, but a decent ratio of regioisomers was obtained in one palladium(0)-catalyzed case (71a → 77a and 78a, upper). Palladium(0)-catalyzed addition of 25 across an alkyl-substituted internal alkyne afforded a low yield of the adduct (71c → 77c, upper). That poor yield was substantially higher in the related platinum(0) catalysis (71c → 77c, lower), and that is one of the few instances where the platinum(0)-catalyzed Si–B bond activation is clearly superior to the palladium(0)-catalyzed procedure.

The mechanism of the platinum(0)-catalyzed silaboration of alkynes was investigated by the laboratory of Ozawa in stoichiometric experiments with silyl(boryl)platinum(II) complexes (Scheme 22).41 These complexes XX, bearing different phosphine ligands, were prepared by oxidative addition of Me2PhSi−Bpin (25) to a platinum(0) precursor (XIX → XX). This step was found to be favored for compact phosphine ligands such as Me2PhP or Me3P. Kinetic studies revealed that a ligand dissociation is likely to occur trans to the silyl group prior to alkyne coordination (XX → XXI → XXII). The subsequent alkyne insertion into the Pt–B bond was explained by kinetic reasons and is supported by thermodynamic data reported by Sakaki et al. on the basis of calculated bond energies (XXII → XXIII → XXIV).42 The reductive elimination step that closes the catalytic cycle (XXIV → XIX + 67h) is, in turn, facilitated by bulky phosphines.

Ito and co-workers also investigated a nickel(0)-based catalytic system in the reaction of Me5PhSi−Bpin (25) and alkynes.43 The outcome of the nickel(0) catalysis is distinct from that of the catalysts with palladium(0) and platinum(0).
With alkyl-substituted internal alkynes, homodimerization occurred in excellent yields (71c−e → 79c−e, Scheme 23, upper). More reactive tolan (71b) was inert in the homocoupling but participated in the cross-coupling with a terminal alkyne (66s), yielding a single regioisomer in moderate yield along with both homodimerization products (71b + 66s → 80, Scheme 23, lower).

The proposed mechanism for the dimerization commences with the oxidative addition of Me$_2$PhSi−Bpin (25) to nickel(0) (XXV → XXVI, Scheme 24). Ligand dissociation is then followed by alkyne coordination (XXVI → XXVII → XXVIII). Again, the alkyne inserts exclusively into the Ni−B bond (XXVIII → XXIX). Insertion of another molecule of the alkyne into the newly formed C−Ni bond in XXIX was excluded as no trimerization was observed (XXIX → XXX). Alkyne insertion into the Ni−Si bond is expected to be faster, leading to a nickel(II) complex with two vinyl groups (XXIX → XXXIII). Reductive elimination then forms the new C−C bond and releases nickel(0) (XXXIII → XXV + 79).

A seminal contribution to the transition metal-catalyzed silylation of alkynes that does not involve oxidative addition of the Si−B bond to the transition metal was made by Oshima and co-workers as early as 1986. In the presence of catalytic amounts of CuCN, borate Me$_2$PhSi−BEt$_3$Li (81) was used to convert terminal as well as internal alkynes to the corresponding vinylic silanes (66 → 82 + 83 and 71 → 84 + 85, Scheme 25). Protic additives, e.g., MeOH, emerged as crucial for full conversion. The regioselectivity of the transformation is dominated by the substrate structure, and the best results were achieved with unprotected propargylic alcohols 66v and 71f, respectively (66v → 82v and 71f → 84f). Moreover, a SiMe$_3$ substituent was beneficial to the selective formation of only one regioisomer (71h → 84h).
Several aspects are emphasized by the authors with regard to a possible reaction mechanism: The addition of Me₂PhSi⁻BEt₃Li (81) to the alkyne proceeds exclusively in a cis fashion (Scheme 26). Control experiments verified its reversible nature so that an equilibrium between the alkyne (66 or 71), copper(I) complex XXXIV, and vinylic borate XXXV exists. Under protic conditions, the equilibrium is shifted to the product (82 or 84) by protonation of either of the intermediates XXXIV and XXXV. It is noteworthy that no reaction is observed in the absence of a copper(I) source.

An interesting observation was made when screening other transition metals: (Ph₃P)₂CoCl₂ proved to be a potent catalyst for the conversion of terminal alkynes providing exclusively one regioisomer (Scheme 27). Conversion of representative alkynes that furnished only moderate ratios in the copper(I)-catalyzed series was now regioselective (66 → 82). Other transition metals, e.g., palladium(0), ruthenium(II), or nickel(II), were not effective in this reaction.

Whereas Oshima’s protocols⁴⁴ display a preference for the linear products (Schemes 25 and 27), Loh and co-workers introduced a modified catalytic system that allows for the selective synthesis of either linear or branched vinylic silanes by variation of the added phosphine ligand (Scheme 28, upper). This time with Me₂PhSi⁻Bpin (25), a combination of CuCl, NaOtf, and L₂ in THF promoted the reaction of terminal alkyne 66a to give the linear compound 82a selectively (66a → 82a). Alternatively, branched vinylic silane 83a was accessible by choosing L₃ as ligand (66a → 83a).

With the optimized system for branched products, the substrate scope of the reaction was explored (Scheme 28, lower). A wide range of functional groups including chloride, nitrile, ester, or amide was compatible with the reaction conditions, and generally good yields as well as synthetically useful regioisomeric ratios were feasible. It is worth mentioning that even an alkene moiety remained unaffected (66b’ → 83b’). Only phenylacetylene (66h) furnished a significantly decreased regioselectivity, presumably owing to the electron-deficient character of the terminal alkyne carbon (66h → 83h + 82h, 83h/82h = 62:38).

A mechanism for the silylcupration of acetylenes was previously reported,⁴⁶ and the key features also apply to the present system (Scheme 29). The in situ-generated Cu(I)−SiMe₂Ph complex XXXIX (XXXVI → XXXVII → XXXIX) is likely to coordinate the alkyne (XXXIX → XL). Insertion of the C−C triple bond into the Cu−Si bond putatively proceeds through a four-membered transition state (XLI) arriving at vinylic copper species XLII (XL → XLII → XLII). Upon protonation, product 83 is obtained along with the regenerated copper alkoxide XXXVI (XLII → XXXVI + 83).

4.1.2. Alkenes.
Silaboration of alkenes also traces back to the seminal work of the Ito group.⁴⁷ In contrast to the normal regioselectivity seen with C−C triple bonds, the platinum(0)-catalyzed addition of Me₂PhSi−Bpin (25) across terminal C−C double bonds results in 1,2-difunctionalized alkanes with the silyl group selectively attached to the terminal carbon (86a−g → 87a−g, Scheme 30). The other regioisomer was not detected.

Scheme 26. Possible Reaction Path of the Copper(I)-Catalyzed 1,2-Addition of Me₂PhSi−BEt₃Li (81) to Alkynes

Scheme 27. Cobalt(II)-Catalyzed Regioselective 1,2-Addition of Me₂PhSi−BEt₃Li (81) to Alkynes

Scheme 28. Copper(I)-Catalyzed Regiodivergent Silylation of Terminal Alkynes

dx.doi.org/10.1021/cr3003517 | Chem. Rev. XXXX, XXX, XXX–XXX
even detected but, instead, 1,1-difunctionalization was a minor side-reaction in a few cases (88a–c, Scheme 30). It is important to note that palladium–isocyanide complexes, which had been the catalysts of choice for the alkyne silaboration (cf. Scheme 15, upper, in section 4.1.1), were completely ineffective in this transformation. The mechanistic rationale is similar to that for the platinum(0) catalysis with alkynes (cf. Scheme 22 in section 4.1.1.). Regioselective alkene insertion into the Pt–B bond is followed by reductive elimination to form the C–Si bond (XLIII → XLIV → 87, Scheme 31). The 1,1-disubstituted byproduct is supposed to be the result of a β-hydride elimination of intermediate XLVI (XLVI → XLVII) followed by hydroplatination with reverse regioselectivity (XLVII → XLVIII).47

A few years ago, the laboratory of Suginome introduced an intramolecular variant of the above-described reaction where the formation of a 1,1-difunctionalized byproduct was not observed (Scheme 32).48 A major aspect of this work is the ligand-dependent diastereoselectivity. With CyPh2P2, silaboration across the tethered alkene is essentially trans-selective (89a–e → trans-90a–e, left column) whereas use of the bulky phosphite ligand (2,4-tBu2C6H3O)3P resulted predominantly in the formation of the cis-isomers (89a–e → cis-90a–e, right column).

Distinctly different reactivity for this kind of substrates was observed when the terminal alkene was 1,1-disubstituted (91a–

The authors suggested that the additional substituent at the alkene steers the reaction toward β-hydride elimination after C–B bond formation. Reductive elimination of the Si–Pt–H intermediate closes the catalytic cycle (not shown).

Very recently, a transition metal-free silaboration of aryl-substituted alkynes (mainly styrenes) was published by the Ito group of Hokkaido University.50 The highly regioselective addition of Me3P–Bpin (25) across several terminal and...
internal alkenes was catalyzed by tBuOK, delivering the boryl group into the benzylic position in all cases (86e → 87e and 93a−e → 94a−e, Scheme 34). Moreover, the diastereoselectivity for internal alkenes is remarkable, and anti relative configuration is favored (94c and 94d). It is interesting that either double-bond isomer of 93c afforded the same major diastereomer. Conversely, aliphatic alkenes or acrylates showed no reaction under these conditions. The activation of the Si−B bond relies on the addition of tert-butoxide to the boron atom of Me2PhSi−Bpin (25). The tetrahedral geometry at the boron atom was verified in stoichiometric NMR experiments. Further mechanistic details were, however, not reported by the authors.

Matsumoto and Ito investigated the photochemical homolytic cleavage of silylboranes.37 When diamino-substituted Me2PhSi−B(NiPr2)2 (95) was irradiated in the presence of a terminal alkenes, an allylsilane, resulting from the addition of a silyl radical to the terminal position of the alkene, was isolated in moderate yield (86a → 96a, Scheme 35, upper). The boryl fragment was not incorporated into the product. The hydrogen atom terminating the radical reaction is believed to originate mainly from the isopropyl groups of the aminoborane 95. However, a solvent screening revealed that the reaction works particularly well in ether solvents, and the involvement of tetrahydrofuran (THF) as a hydrogen atom source was shown in a deuteration experiment. The intermediate boryl radical is likely to abstract a hydrogen atom to form a hydroborane. Moreover, methyl crotonate also underwent this radical silylation although with moderate regioselectivity (E-97a → 98a + 99a, Scheme 35, lower), and with substoichiometric amounts of 95 a radical polymerization of the alkene with silyl groups as polymer termini was observed (not shown).37

4.2. 1,2-, 1,4-, and 1,n-Addition to C−C Multiple-Bond Systems

4.2.1. 1,3- and 1,6-Dienes. Catalytic functionalization of 1,3-dienes is connected to several selectivity issues. Aside from differentiation between a 1,2- and a 1,4-addition, control of the regioselectivity as well as the double-bond geometry (in the case of 1,4-addition) must be considered. Diastereoselective or even enantioselective variants are also desirable. Again, the seminal contribution emerged from the Ito laboratory a decade ago.51 Although palladium−isocyanide complexes, well-suited for alkyne silaboration, were completely ineffective, catalysts based on platinum furnished the 1,4-addition adducts yet as 1:1 mixtures of double-bond isomers. Conversely, a catalytic system derived from Ni(acac)2 and dibal catalyzed the 1,4-addition of Me2PhSi−Bpin (25) in high yields with complete control of the alkene geometry in favor of the Z-isomer (Scheme 36). Several acyclic 1,3-dienes were subjected to this protocol, affording the corresponding adducts with allylic boryl and silyl groups (Table 1). The only drawback of this method is the poor regioselectivity for the unsymmetrically substituted substrates 100b and 100c (entries 2 and 3).

For the silaboration of cyclic 1,3-dienes, the elaborated reaction setup had to be modified as no product was obtained.51 With the ligand CyPh2P, the reaction was cis-selective and proceeded in excellent yields for cyclohexa-1,3-
diene and cyclohepta-1,3-diene (103a and 103b, Scheme 37). In turn, cyclopentadiene as well as cycloocta-1,3-diene were inert. The effect of the added phosphine ligands in platinum(0)-catalyzed silaborations on the kinetics of the oxidative addition and reductive elimination was investigated in detail by Moberg, Jutand, and co-workers with the aid of electrochemical methods.52

On the way to an asymmetric version of the previously illustrated silaboration of cyclohexa-1,3-diene (cf. 103a → 104a, Scheme 37), Gerdin and Moberg tested dozens of chiral phosphine and phosphoramidite ligands in combination with Ni(acac)2 and Pt(acac)2.53 Moderate enantioselectivity and high conversion were achieved in the platinum(0)-catalyzed variant with phosphoramidite L6 (Scheme 38).

In an attempt to combine the 1,4-silaboration with an allylboration of an aldehyde in a domino reaction, Ito and co-workers found the unexpected outcome of an intercepted 1,4-silaboration.54 Three new bonds (a C−B, a C−C, and a Si−O bond) were formed, arriving at silicon-protected homoallylic alcohols (100e→105a−f, Scheme 39, upper). Fortunately, this platinum(0)-catalyzed reaction proceeded with high regio- and diastereoselectivity for several aldehydes in the reaction with 2-phenylbuta-1,3-diene (100e) and Me2PhSi−Bpin (25). The same reaction was observed for 1,2-dimethylcyclohexane (100f) and buta-1,3-diene (100d) (Scheme 39, lower).

The authors explained the formation of the unexpected product by the addition of the allylic platinum(II) intermediate LI to the aldehyde (LI→LII, Scheme 40, upper) instead of the usual C−Si bond formation through reductive elimination. The platinum(0) complex XLIIX is reformed by reductive elimination of the alkoxysilylplatinum complex LII with concomitant Si−O bond formation (LII→105). The high diastereoselectivity was rationalized by a cyclic transition state for the aldehyde addition step with platinum(II) as Lewis acid (LIII, Scheme 40, lower).54

Saito, Kobayashi, and Sato succeeded in elaborating a nickel(0)-catalyzed three-component coupling of 1,3-dienes, aldehydes, and Me2PhSi−Bpin (25).55 A key intermediate in this process is the cyclic allylnickel complex LIV with a Ni−O bond, which is generated through oxidative cycloaddition of the 1,3-diene and an aldehyde to a nickel(0) complex (100 or 109→LIV, Scheme 41). Together with Me2PhSi−Bpin (25), transmetalation or σ-bond metathesis affords then the allylic nickel(II) species LV (LIV→LV) and final reductive
elimination accounts for the formation of the α-chiral allylic silane (LV → 108 or 110).

From optimization studies, ligand L7 was identified as appropriate, allowing for the reaction of diene 100g with various aldehydes to furnish the corresponding products 108a–g as single diastereomers with high enantiomeric purities (100g → 108a–g, Scheme 42, upper). Generally good chemical yields were obtained except for the coupling with electron-deficient 4-trifluoromethylbenzaldehyde (100g → 108c, 29% yield). Other 1,3-dienes underwent the transformation as well, e.g., silyl-substituted 100h produced chiral allylic silane 108h in 80% yield and with decent 82% ee (100h → 108h, Scheme 42, lower). Both yield and enantioselectivity decreased with alkyl-substituted 100i (100i → 108i, 62% yield, 66% ee). Internal 1,3-dienes 109a and 110a were less suitable, giving either low yield (109a → 110a, 22% yield, 92% ee) or diminished enantiomeric excess (109b → 110b, 51% yield, 20% ee). Nevertheless, this approach provides an efficient catalytic asymmetric access to enantiomerically enriched allylic silanes.

The Shimizu group applied the platinum(0)-catalyzed addition of Me₂PhSi–Bpin (25) to diborated buta-1,3-diene 111 (Scheme 43).56 The densely functionalized alkene 112 with allylic and vinylic C–B/C–Si bonds was obtained in decent yield as a single double-bond isomer.

When Gerdin and Moberg studied this class of compounds in the presence of a nickel(0) catalyst, an interesting reaction was discovered.57 No 1,4-silaboration product was detected at all, and these authors identified two compounds instead, one formally derived from 1,4-hydrosilylation (113c) and one from dehydrogenative boration (114c) (Scheme 44, upper). The product distribution changed when 1,3-disubstituted buta-1,3-dienes such as 100c were used (Scheme 44, lower). Here, the two products of the newly discovered reaction 115c and 118c were formed along with the anticipated 1,4-addition product 116c. Also, the 1,2-addition product 117c was observed when Me₂PhP or Et₃P were used as ligands. As neither a hydrosilane nor a hydroborane had been added to the reaction mixture, the authors explained the reaction outcome by a disproportionation mechanism (Scheme 45).57 After the insertion of the 1,3-diene 109c into the Pt–B bond...
(XXVI → LVI), the allylnickel intermediate LVI is likely to suffer β-hydride elimination (LVI → LVII) rather than reductive elimination with both terminal carbon atoms of the allylic system LVI substituted. This step delivers the borated product 114c along with the Si−Ni−H complex LVII. The latter is then available for a 1,4-hydrosilylation with another molecule of the diene (LVII + 109c → 113c).

The photochemical cleavage of Me₂PhSi−B(NiPr₂)₂ (95) was investigated by Matsumoto and Ito not only for alkenes (cf. Scheme 35 in section 4.1.2) but also in the presence of 1,6-dienes. A radical alkene silylation−5-exo-cyclization sequence furnished tetrahydrofurans (119 → 120), pyrrolidines (121 → 122), and cyclopentanes (123a−c → 124a−c) in acceptable yields but with moderate diastereoselectivities (Scheme 46). As in the photochemical alkene silylation, the diaminoboryl group was not incorporated into the final product but served as a hydrogen source.

4.2.2. 1,7-Diynes and 1,3- and 1,6-Enynes

The silaboration of octa-1,7-diyne (125) was independently investigated by the groups of Ito and Tanaka. The outcome was subtly dependent on the transition metal−ligand combination. The ligand was crucial in the palladium(0)-catalyzed variants. An isocyanide ligand led to clean formation of the double 1,2-addition product (125 → 126, Scheme 47, upper) while the etpo ligand furnished a mixture of mono 1,2-addition product 127 and cyclic byproduct 128 (Scheme 47, center). The cyclization product 129 became the main product when a nickel(0) catalyst was used (Scheme 47, lower), corresponding to the intramolecular version of the nickel(0)-catalyzed dimerization of alkynes (cf. Schemes 23 and 24 in section 4.1.1).

Similar to the 1,7-diyne structure, the 1,3-enyne motif also possesses different reactivities toward Si−B compounds. Silaboration of 1-ethynylcyclohexene (66b′) had already been included in the seminal paper by Ito and co-workers (66b′ → 130b′, Scheme 48, upper). 130b′ is derived from a chemoselective addition of Me₂PhSi−Bpin (25) across the triple bond, leaving the double bond unreacted. Building on this finding, Lüken and Moberg extensively investigated several 1,3-enynes in palladium(0)- and platinum(0)-catalyzed silaboration.
It turned out that the 1,2-addition of Me2PhSi−Bpin (25) across the C−C triple bond is the normal reactivity as for 131 (131 → 132, Scheme 48, center), and that the control of the regioselectivity was not facile for some substrates. A bulky R group installed at the alkyne terminus thwarted 1,2-addition, and 1,4-addition yielded allenic products (133a → 134a and 133b → 134b, Scheme 48, lower).

As part of their seminal work, Tanaka and co-workers also reported a high-yielding silaborative cyclization of a 1,6-enyne (135a → 136a, Scheme 49, upper). C−B bond formation in the terminal position is in agreement with the generally accepted mechanistic picture. Moberg and co-workers extended the scope of this reaction by applying a palladium−PEPPSI−carbene complex (PEPPSI = pyridine-enhanced precatalyst preparation stabilization and initiation). Their protocol afforded excellent yields for cyclopentanes 137a and 137b, as well as for pyrrolidine 139 (Scheme 49, lower).

Ohmura, Suginome, and co-workers used 1,6-enynes as a probe to gain insight into the mechanism of the regioselective alkyne silaboration. Conceivable reaction pathways are summarized in Scheme 50. The silaborative cyclization products, observed in the aforementioned reactions, result from a regioselective insertion of the C−C triple bond into the Pd−B bond (LVIII → LX) followed by insertion of the C−C double bond into the C−Pd bond (LIX → LX). The reaction is terminated by reductive elimination, thereby forming the terminal C−Si bond (LX → 141). However, this reaction is highly ligand-dependent. With Ph3P, reductive elimination appears to be faster than cyclization, leading to 1,2-addition (LIX → 140). In contrast, with sterically demanding L1, cyclic compound 141 is formed predominantly (LX → 141) along with a small amount of “inverse addition” product (LXI → 142).

4.2.3. Allenes. The silaboration of allenes is a beautiful illustration of an evolution from gaining control over regioselectivity to controlling the diastereo- and, finally, enantioselectivity of a reaction. It all started with two seminal contributions about 10 years ago, one by the laboratory of Tanaka and one by Ito and co-workers. The former group investigated the influence of different catalytic systems on the silaboration of 1,1-dimethylallene (143) with Me2PhSi−Bpin (25) (Scheme 51). Although a palladium−epo combination showed no regioselectivity (Scheme 51, left), addition of Ph3P resulted in a completely selective reaction with the boryl group connected to the central carbon atom and the silyl group connected to the more substituted terminus (143 → 144).

Scheme 51, center). The application of a platinum catalyst reversed this selectivity, now positioning the silyl group at the unsubstituted terminus (143 → 145, Scheme 51, right). Me2PhSi−Bdmeda (28), which had proven to react in alkyne silaboration (cf. Scheme 15, center, in section 4.1.1), was not applicable to allenes.60 Conversely, the regioselectivity was also high with the palladium−epo catalyst for 1-methylallene (146a → 147a, Scheme 52, upper).61 Ito and co-workers introduced a modified palladium−isocyanide complex that effectively catalyzed the difunctionalization of monosubstituted allenes in high yields and with excellent regioselectivities (146b−g → 147b−g, Scheme 52, lower).62 Again, the boryl group was transferred to the central position without exception, and the silyl group was preferentially attached to the substituted allene carbon. The manifold synthetic applications of β-borated allylic silanes were...
demonstrated by Suginome and Ito in a separate publication (not shown).62

To elucidate the mechanism and to clarify the origin for the regioselectivity, Suginome and Ito conducted several control experiments63 and performed theoretical investigations in collaboration with Ehara, Nakatsuji, and co-workers some years later.64 First, it was shown that monosubstituted allene 146h reacted preferentially in the presence of 1,3-disubstituted 149, although both substrates where found to undergo addition of the Si–B bond across the internal double bond in separate experiments (Scheme 53, upper). Second, electron-poor allene 146i reacted faster than electron-rich allene 146h as demonstrated in another competition experiment (Scheme 53, lower).63 Moreover, a change of regioselectivity was observed for electron-withdrawing substituents as in 146i.61,63 These results, together with the theoretical investigations,64 were merged into a detailed mechanistic picture (Scheme 54).63 After oxidative addition of Me2PhSi–Bpin (25) to the palladium(0) complex (LXII → LXIII), the allene 146 displaces the ligand trans to the silyl group (LXIII → LXIV). The subsequent insertion of the allene into the Pd–B bond was found to be rate-determining and proceeds with the more electron-deficient, i.e., terminal, double bond (LXIV → LXV). Reductive elimination from the thus-formed σ-allylic palladium intermediate LXV cannot proceed due to the trans relationship of the silyl and allyl ligands in LXV. The crucial step in terms of the regioselectivity is the conversion of the σ- into the π-allylic complex LXVI, which enables an instantaneous reductive elimination from the cis complex (LXVI → LXII + 147). This step is supposed to be faster than interconversion of cis- and trans-π-allylic intermediates (not shown), from which the other regioisomer would be released. Hence, reductive elimination is kinetically controlled, and that explains the predominant formation of the thermodynamically less stable internal addition compound 147.64

Quite contrary to the examples discussed above, the presence of an organic iodide totally changes the regioselectivity of the silaboration reaction (Scheme 55).65 Cheng and co-workers reported that the presence of catalytic amounts of 151 led to a 1,2-addition product with the silyl group attached to the central allene carbon atom and the boryl group in the terminal position (143 → 152, Scheme 55, upper). The effect was general for several 1,1- and monodisubstituted allenes, and E/Z-ratios were excellent for the latter (146 → E-153, Scheme 55, lower). As normal selectivity was observed without this additive (cf. Schemes 51 and 52), it was obvious that iodide 151 accounts for this remarkable effect.65 The authors suggested a mechanism that is fundamentally different from that of the iodide-free setup. The oxidative addition/reductive elimination mechanism (cf. Scheme 54) is replaced by a transmetalation mechanism with regard to Si–B bond activation (Scheme 56, upper). To initiate the catalysis, oxidative addition of the C–I bond in additive 151 to palladium(0) and subsequent transmetalation with Me2PhSi–Bpin (25) liberates Me2PhSi–I (154). We note here that the chemoselectivity of the transmetalation of the Pd–I intermediate is opposite to that of Cu–O and Rh–O complexes (cf. Scheme 11, lower in section 3). The resulting arylpalladium(II) complex with a Pd–B bond...
further reacts with the allene to afford a 1,2-addition adduct (not shown). The formation of this adduct was verified using aryl iodide 155, and 4% isolated 156 nicely agrees with 5 mol % catalyst loading (Scheme 56, lower). The Si–I reagent 154 generated in the initial turnover then oxidatively adds to palladium(0) (154 → LXVII). Silapalladation of the less-substituted double bond of the allene produces an allylic intermediate (LXVII → LXVIII → LXIX) that transmetalates with Me₂PhSi–Bpin (25) (LXIX → LXX), thereby regenerating Me₂PhSi–I (154) and forming allyl(boryl)palladium intermediate LXX. The catalytic cycle closes with C–B bond formation in the final reductive elimination (LXX → E-153). Comparable results are obtained by direct use of Me₂PhSi–I (154) as additive. The diastereoselectivity in favor of E-configuration was explained by the steric repulsion of the R substituent and the silyl group in the silapalladation step (LXVIII → LXIX).

An approach to asymmetric silaboration of allenes was reported by Suginome, Murakami, and co-workers a decade ago. A matched combination of the pinanediol-derived enantiopure silylboronic ester (-)-34 and the chiral ligand L8 afforded the allylic silanes 157 in excellent yields and with high diastereoselectivities (Scheme 57). The catalyst precursor CpPd(η³-C₃H₅) even allowed for running the reactions at room temperature. The fact that both the chiral catalyst and the chiral reagent had an influence on the selectivity was further verified when achiral Me₂PhSi–Bpin (25) was used together with L8; only moderate enantioselectivity of 68% ee was obtained (not shown).

In an extension of this work, Ohmura and Suginome applied this silaboration to α-chiral allenes (Scheme 58). It was nicely shown that the combination of the chiral ligand L8 and the
chiral reagent (−)-34 overrides the stereochemical information present in the molecule, that is, catalyst and reagent control outcompete substrate control. This method enabled access to all possible stereoisomers of the protected β-silylalcohol 159.

A few years later, Suginome and co-workers succeeded in the elaboration of an enantioselective variant of the silarboration of allenes by tuning the axially chiral ligand L8. With L9, enantioselectivities as high as 93% ee were obtained (146 → 147, Scheme 59). Also, a substrate containing both allene and alkyne moieties was chemoselectively silarbated at the allene function (not shown).67

Scheme 59. Enantioselective Silaboration of Allenes

4.3. 1,2-Addition to C–Het Double Bonds

4.3.1. Aldehydes. In the recent past, the possibility of the catalytic generation of nucleophilic Cu−Si reagents through transmetalation of copper(I) alkoxy/hydroxide complexes with Me₂PhSi−Bpin (25) attracted considerable interest. Among others, the 1,2-addition of silicon nucleophiles to aldehydes represents a potential field of application. Accordingly, Kleeberg and our group investigated this reaction in detail with stoichiometric and catalytic experiments combined with NMR spectroscopic measurements.68 Our findings resulted in the elaboration of a convenient protocol for the synthesis of α-silyl alcohols using preformed L10-CuOtfBu as catalyst (Scheme 60). Transformation of aromatic and aliphatic aldehydes at 60 °C in toluene afforded the products in generally good yields, usually within 16 h. However, prolonged reaction time was required for sterically hindered and electron-rich aryl groups (160b → 161b, 120 h, and 160c → 161c, 84 h).

Scheme 60. Copper(I)-Catalyzed 1,2-Silylation of Aldehydes Using L10-CuOtfBu

As already mentioned, detailed studies were conducted to elucidate the mechanism (Scheme 61). The formation of L10-Cu−SiMe₂Ph (163) from L10-CuOtfBu and Me₂PhSi−Bpin (25) was confirmed in an independent stoichiometric experiment. Its presence in the reaction mixture during the catalytic process was likewise secured with the aid of 1H NMR spectroscopy indicating that 163 is the copper complex with the longest lifetime. Hence, insertion of the aldehyde 160 into the Cu−Si bond is assumed to be rate-determining (163 → 164). Subsequent transmetalation of 164 with another molecule of 25 should be fast, giving rise to 166 and Cu−SiMe₂Ph (163) (164 → 163 + 166). The same step must also be substantially faster than the competing [1,2]-Brook rearrangement (164 → 165), which is observed in stoichiometric experiments where no Me₂PhSi−Bpin (25) is available for the regeneration of L10-Cu−SiMe₂Ph (163). Attempted reaction of isolated [1,2]-Brook rearrangement product 165 with Me₂PhSi−Bpin (25) did not produce any boric ester 166, suggesting that 165 is not involved in the catalysis and that there is no rapid equilibrium between 165 and 164.68

A more reactive catalytic system evolves from a combination of CuCN and NaOMe in THF/MeOH without added ligands (Scheme 62).68 Fast turnover at significantly lower temperatures enabled the efficient transformation of aromatic and aliphatic aldehydes into α-silyl alcohols (160 → 161). In agreement with previous results (cf. Scheme 60), electron-deficient nonhindered aldehydes performed best whereas double the amount of the catalyst was required to obtain reasonable yields for sterically demanding substrate 160b (160b → 161b, 58% yield). Aliphatic aldehydes 160g and 160l gave decent yields only when using excess Me₂PhSi−Bpin (25) (160g → 161g and 160l → 161l). Notably, the order of reagent addition is pivotal to consistent results.

In many aspects the catalytic cycle for the CuCN/NaOMe system resembles the one investigated in detail for L10-CuOtfBu (cf. Scheme 61). It is initiated by the boron-to-copper transmetalation of the in situ-formed Cu(I)−OMe complex LXXI and Me₂PhSi−Bpin (25), producing the nucleophilic Cu(I)−SiMe₂Ph complex XXXIX (LXXI → LXXII → XXXIX, Scheme 63). 1,2-Addition to the aldehyde...
160 (XXXIX → LXXIII) is followed by protonation of the thus-obtained copper alkoxide LXXIII in the presence of MeOH (LXXIII → LXXI + 161). Without added MeOH, most likely another σ-bond metathesis of intermediate LXXIII with 25 occurs, resulting in the formation of 166 and Cu(I)−SiMe2Ph (XXXIX)(LXXIII → LXXIV → XXXIX + 166). Hydrolysis during the aqueous workup affords the α-silyl alcohol 161 (166 → 161).

4.3.2. Imines. Activation of the Si−B bond through copper(I)-catalyzed transmetalation was exploited in our laboratories for the generation of silicon nucleophiles that cleanly add to imine electrophiles to form α-silylated amines (Scheme 64). A range of substituents at the nitrogen atom, e.g., SO2Tol, P(O)Ph2, phenyl, or benzhydryl, are tolerated under the reaction conditions, and the substrate scope of aldehyde-derived imines was investigated using the benzhydryl group (Scheme 64, upper). Good yields were obtained for aryl- as well as hindered alkyl-substituted compounds with the latter requiring an increased amount of Me2PhSi−Bpin (25) (169a−g → 170a−g). In contrast, no conversion was observed for an imine with a tertiary alkyl group (169h → 170h). Apart from that, a diasterecontrolled addition to the enantiopure sulfinylimine (S)-171 was reported, yielding the chiral α-silylated amine (S,S)-172 in good yield and with decent diastereoselectivity [(S)-171 → (S,S)-172, Scheme 64, center]. Challenging ketimines proved to be suitable substrates for the silylation as well, and this time electron-withdrawing groups at the nitrogen atom were indispensable for a successful transformation (Scheme 64, lower). As to the mechanism, in the presence of an alcohol additive the reaction is assumed to proceed analogously to the 1,2-addition of nucleophilic silicon to aldehydes (cf. Scheme 63, right cycle in section 4.3.1).

4.3.3. Carbon Dioxide. The intriguing copper(I)-mediated reduction of carbon dioxide with Me2PhSi−Bpin (25) was studied by Kleeberg, Marder, and co-workers (Scheme 65, upper). In an initial experiment, the reaction of stoichiometrically generated L10·Cu−SiMe2Ph (163) with excess carbon dioxide was monitored by 1H and 13CNMR spectroscopy whereat fast insertion of carbon dioxide into the Cu−Si bond was detected (163 → 175). Over time, slow but clean decomposition of 175 accounted for the formation of copper(I) silanolate 176 with concomitant evolution of carbon monoxide (175 → 176). Complexes 163, 175, and 176 were spectroscopically and crystallographically characterized. Quantum-chemical calculations verified a higher activation barrier for the decomposition versus insertion, and the former is assumed to be rate-determining in the overall process. Competing [1,2]-Brook rearrangement, which occurred during the 1,2-addition to aldehydes (cf. Scheme 61 in section 4.3.1), was not seen in this system.

Toward the development of a catalytic version, the authors anticipated that complex L10·CuOSiMe2Ph (176) should be capable of participating in a transmetalation with additional...
Me$_2$PhSi$^-$Bpin (25) to yield pinBOSiMe$_2$Ph (177) and regenerate L$_{10}$·Cu·SiMe$_2$Ph (163) (176 → 163 + 177, Scheme 65, center). However, an unexpected observation was made when using excess Me$_2$PhSi$^-$Bpin (25): complete consumption of carbon dioxide resulted in only 70% conversion to carbon monoxide, indicating a more complicated reaction sequence in this process. From the analysis of a crude reaction mixture before completion, compound pinBO(CO)SiMe$_2$Ph (178) was identified as a possible intermediate, suggesting that transmetalation is feasible not only with L$_{10}$·CuOSiMe$_2$Ph (176) but also with L$_{10}$·CuO(CO)SiMe$_2$Ph (175) (175 → 163 + 178). Compound pinBO(CO)SiMe$_2$Ph (178) then decomposes, affording carbon monoxide as well as compounds 177, 179, and 180 (Scheme 65, lower). The fact that not all of the carbon dioxide is converted into carbon monoxide is rationalized by this observation.

4.4. 1,4-Addition to α,β-Unsaturated Carbonyl and Carboxyl Compounds

The enantioselective conjugate silyl transfer onto α,β-unsaturated acceptors had remained elusive until we recognized the potential of Me$_2$PhSi$^-$Bpin (25) to serve as silicon anion equivalent in rhodium(I)-catalyzed processes. In the presence of a preformed rhodium complex and an additional equivalent of (S)-binap [(S)-L$_{11}$], cyclic enones and α,β-unsaturated lactones of different ring sizes were converted into the corresponding β-silylated products with high enantiomeric purities (181a-c → 182a-c and 183a-b → 184a-b, Scheme 66). The choice of the base additive was crucial for full conversion as well as high enantioselection, and Et$_3$N emerged as optimal from a systematic survey of organic and inorganic bases.

Later, it was found that preformation of the rhodium(I) complex was not necessary and a straightforward combination of [Rh(cod)$_2$]OTf and (R)-L$_{11}$ enabled the in situ generation of the active catalyst. Thus, reaction of acyclic α,β-unsaturated esters bearing aryl or alkyl substituents at the β-position afforded α-chiral silanes with impressive enantioselectivities of >99% ee (Z-185a-h → 186a-h, Scheme 67, upper). Aside from that, synthetically useful imides performed well with comparable results (Z-187a → 188a and Z-187b → 188b, Scheme 67, lower). In both cases, the success of the transformation hinges upon the utilization of Z-configured substrates. Concomitant 1,4-reduction of the acceptors

Scheme 65. Copper(I)-Catalyzed Reduction of Carbon Dioxide with Me$_2$PhSi$^-$Bpin (25)

Scheme 66. Rhodium(I)-Catalyzed Conjugate Silylation of Cyclic Acceptors

Scheme 67. Rhodium(I)-Catalyzed Conjugate Silylation of Acyclic Acceptors
accounts for the moderate yields, and the origin of this side-reaction still requires clarification.

The proposed catalytic cycle is in accordance with the mechanistic picture established by Hayashi et al. for the rhodium(I)-catalyzed 1,4-addition of carbon nucleophiles (Scheme 68).\(^\text{74}\) After the initial chemoselective coordination of Rh(I)–OH (LXXV) to Me₃PhSi–Bpin (25), formal σ-bond metathesis delivers the nucleophilic Rh(I)–SiMe₃Ph complex LXXVII (LXXV → LXXVI → LXXVII). Subsequent insertion of the αβ-unsaturated acceptor into the Rh(I)–Si bond is followed by hydrolysis of the rhodium enolate LXXIX, affording the product and catalytically active LXXV (LXXVII → LXXIX → LXXX + LXXV).

With regard to the implementation of this protocol into natural product synthesis, we extended the substrate scope to functionalized, e.g., γ- and δ-silyloxy-substituted, αβ-unsaturated acceptors Z-189a and Z-189b that participated in the conjugate silylation in good yields and with excellent 99% enantiomeric excess (ee) in both cases (Scheme 69, upper).\(^\text{75}\) Catalyst-controlled diastereoselective transformation of the chiral δ-silyloxy-substituted αβ-unsaturated ester Z-(S)-191 allowed for the synthesis of either diastereomer (S,S)-192 and (S,R)-192 with diastereomeric ratio (dr) = 99:1 and dr = 95:5, respectively (Z-(S)-191 → (S,S)-192 and Z-(S)-191 → (S,R)-192, Scheme 69, lower). The anti-isomer was then elaborated into the C7–C16 fragment 193 of (+)-neopeltolide including a Fleming oxidation as key step for the construction of the MeO-substituted stereocenter [(S,R)-192 → 193, Scheme 69, lower].

We also took advantage of the highly catalyst-controlled stereoinduction of the rhodium(I)-catalyzed process to perform a two-directional desymmetrization of prochiral bis(αβ-unsaturated) compounds (Scheme 70).\(^\text{76}\) By means of a double 1,4-addition of nucleophilic silicon to Z,Z-194a and Z,Z-194b, pseudo C₂-symmetric disilylated products (S,S)-195a and (S,S)-195b, respectively, were obtained, each virtually as the sole isomer (Z,Z-194a → (S,S)-195a and Z,Z-194b → (S,S)-195b). Subsequent stereospecific oxidative degradation of the C–Si bonds using the Fleming protocol provided access to stereodefined 1,3,5- and 1,4,7-triols (S,S)-196a and (S,S)-196b in only one step [(S,S)-195a → (S,S)-196a and (S,S)-195b → (S,S)-196b].

Apart from rhodium(I), Lee and Hoveyda succeeded in developing a generally applicable enantioselective conjugate silyl transfer that relies on the copper(I)-catalyzed activation of Me₃PhSi–Bpin (25).\(^\text{77}\) Using a combination of CuCl, NaOBut, and the chiral carbene precursor L12 in THF at ~78 °C, all representative cyclic enones 181a–d and δ-lactone 183b reacted with superb chemical yields and good enantiomeric purities (Scheme 71, upper). Remarkably, even sterically demanding γγ-dimethyl-substituted acceptors are susceptible to the conjugate silylation (181e → 182e and 181f → 182f). However, for (SH)-furan-2-one (183a) Hoveyda’s optimal precatalyst proved to be ineffective so that Procter and coworkers designed the new ligand L13 that finally allowed for the enantioselective synthesis of the β-silicon-substituted γ-butyrolactone 184a in 82% ee (183a → 184a).\(^\text{78}\) Moreover, acyclic αβ-unsaturated carboxyls and carboxyls (including

Scheme 68. Mechanism of the Rhodium(I)-Catalyzed Conjugate Silylation

![Scheme 68](image)

Scheme 69. Rhodium(I)-Catalyzed Conjugate Silylation in the Synthesis of the C7–C16 Fragment of (+)-Neopeltolide

![Scheme 69](image)

Scheme 70. Rhodium(I)-Catalyzed Conjugate Silylation in Two-Directional Desymmetrization

![Scheme 70](image)
Concerning the mechanism (Scheme 73), a σ-bond metathesis of Cu(I)–OtfBu (LXXXI) with Me₂PhSi–Bpin (25) is assumed to initiate the catalytic cycle, generating the Cu(I)–SiMe₂Ph nucleophile XXXIX (LXXXI → LXXXII → XXXIX). Subsequent 1,4-addition of XXXIX onto the αβ-unsaturated acceptor LXXVIII affords the oxygen enolate LXXXIII (XXXIX → LXXXIII), which, under the aprotic conditions, undergoes another σ-bond metathesis to regenerate the catalytically active Cu(I)–SiMe₂Ph (XXXIX) and boron enolate LXXXV (LXXXIII → LXXXIV → LXXXV). Final hydrolysis furnishes the β-silylated carbonyl or carboxyl compound (LXXV → LXXX).

Shortly after the report by Lee and Hoveyda,77 Riant and co-workers introduced a diastereoselective domino silylative aldol reaction using Me₂PhSi–Bpin (25) as pronucleophile.79 A copper(I) catalyst generated from [(Ph₃P)CuF]·MeOH and diphenylphosphinoferrocene (dppf) (L15) promotes the conjugate silyl transfer onto the chiral acryloyloxazolidinone 205, and the resulting enolate was trapped with various aldehydes (Scheme 74, upper). Thus, aldol structures 206a–d were obtained in good yields and with good diastereoselectivities (205 → 206a–d). The employment of methacryloyloxazolidinone 207 led to the formation of rearranged products 208a–h, which are assumed to arise from an intramolecular ring-opening of the oxazolidinone by the hydroxyl group of the aldol adduct (207 → 208a–h, Scheme 74, lower). Further improvement of the diastereoselection was achieved by changing the substituent at the chiral center of the oxazolidinone moiety (not shown).

Last year, Ibrahim, Córdova, and co-workers merged the copper(I)-catalyzed activation of Me₂PhSi–Bpin (25) with chiral amine catalysis into a protocol that enables the enantioselective conjugate silylation of challenging αβ-unsaturated aldehydes (Scheme 75).80 Chemoselective 1,4-addition (versus 1,2-addition) occurred in the presence of proline derivative 209 and CuCl/KOtfBu to yield the corresponding products in good yields and with high enantiomeric purities (E-210a→l → 211a→l). It is noteworthy...
that even the β,β-disubstituted acceptor E-$210m$ was converted successfully with 67% yield and 76% ee (E-$210m \rightarrow 211m$).

On the basis of experimental results as well as density functional theory calculations, the authors proposed a catalytic cycle (Scheme 76): initial formation of an iminium ion (E-$210 \rightarrow LXXXVI$) is followed by coordination of the Cu(I)−SiMe$_2$Ph nucleophile $XXXIX$ to the sterically less-hindered face of the π-system of the activated acceptor ($LXXXVI \rightarrow LXXXVII$). Subsequent transfer of the SiMe$_2$Ph group onto the β-carbon in $LXXXVII$ furnishes an alkylcopper intermediate ($LXXXVII \rightarrow LXXXVIII$), which upon reaction with water delivers product 211 and regenerates the chiral ammonium ion 212 as well as the nucleophilic Cu(I)−SiMe$_2$Ph $XXXIX$ ($LXXXVIII \rightarrow XXXIX$).

Opposed to copper(I)-mediated transmetalation reactions, Calderone and Santos postulated the participation of a copper(II) complex under aerobic conditions with water as solvent. The active catalyst generated from CuSO$_4$ and 4-picoline transferred the SiMe$_2$Ph group to a wide range of acceptors including enones, enals, α,β-unsaturated esters, sulfones, and nitriles (Scheme 77, upper). Even α-substituted substrates E-$215a$ and E-$215b$ underwent the conjugate silylation with acceptable yields (E-$215a \rightarrow 216a$ and E-$215b \rightarrow 216b$). In contrast to Hoveyda’s protocol (cf. Scheme 72), conversion of $\alpha,\beta,\gamma,\delta$-dienone 219 exclusively produced the 1,4-adduct 220 (Scheme 77, center). However, this regioselectivity might be explained by the increased steric demand owing to two substituents at the δ-position.

With regard to the mechanism, the $L$$_2$Cu(II)−SiMe$_2$Ph nucleophile XC is assumed to be generated through transition state $LXXXIX$ (Scheme 77, lower). Here, 4-picoline not only serves as ligand for copper(II) but also as Brønsted base for the deprotonation of a nucleophilic water molecule. Thus, an sp3-hybridized borate with a weakened Si−B bond is formed and a transmetalation occurs to form $L$$_2$Cu(II)−SiMe$_2$Ph ($XC$).

When copper(I) salts were used as precatalysts, reasonable results were achieved as well, yet the authors suspect that in aqueous media copper(I) disproportionates to copper(II) and copper(0) so that the actual catalyst is a copper(II) complex.

Beyond metal-catalyzed protocols, O’Brien and Hoveyda introduced the first metal-free enantioselective conjugate silylation of α,β-unsaturated compounds that relies on the chemoselective activation of the Si−B bond using N-heterocyclic carbenes (NHCs). At the outset, the potential of such an activation was investigated by reacting stoichiometric amounts of the NHC generated from 221 with Me$_2$PhSi−Bpin ($25 + 221/1,8$-diazabicyclo[5.4.0]undec-7-ene (DBU) → 222, Scheme 78, upper). Nucleophilic attack at the more Lewis acidic boron atom results in the formation of the sp3-hybridized...
borate 222 that was detected by 11B NMR (33.38 ppm for 25 and 8.02 ppm for 222). From this complex the SiMe$_2$Ph group is assumed to be transferred onto an α,β-unsaturated acceptor.

From a systematic survey, it was found that chiral imidazolium salt L16 as carbene precursor in THF/H$_2$O (3:1) is optimal, providing good yields and enantioselectivities for cyclic enones (181a\rightarrow182a, Scheme 78, center). Sterically congested 181e as well as lactone 183b displayed lower reactivities, which is reflected in decreased conversions and yields, respectively (181e\rightarrow182e and 183b\rightarrow184b). Prolonged reaction times led to partial decomposition of the carbene catalyst under the aqueous reaction conditions, and an unselective conjugate silylation became apparent albeit at a slower rate (versus NHC-catalyzed). On account of this, increased catalyst loadings were employed for the conversion of acyclic acceptors, which were generally less reactive as compared to their cyclic analogues (Scheme 78, lower). Despite moderate yields for some substrates, high enantiomeric purities were obtained throughout. Notably, with this protocol α,β-unsaturated aldehydes chemoselectively undergo 1,4-instead of 1,2-addition reactions (E$-210a$, E$-210g$, and E$-210n$$\rightarrow$211a, 211g, and 211n).

4.5. Allylic and Propargylic Substitution

4.5.1. Allylic Precursors. In the context of C–Si bond-forming reactions, the allylic substitution of linear allylic precursors was realized by us exploiting the copper(I)-induced generation of silicon nucleophiles. With optimized reaction conditions, the effect of the leaving group on the regioselectivity was probed (Scheme 79, upper). In analogy to a previous study, similar trends were observed, i.e., γ-selectivity for halides and phosphates (225a\rightarrow227a$\rightarrow$$\gamma$-232a + α-233a) and α-selectivity for carbonates, carbamates, and carboxylates albeit with eroded α-selectivities for the latter (228a\rightarrow231a $\rightarrow$$\gamma$-232a + α-233a). Subsequently, the substrate scope was examined with chloride as the best-performing leaving group whereat generally good yields and excellent regioselectivities were obtained for both aryl- and alkyl-substituted precursors (225b\rightarrowg $\rightarrow$$\gamma$-232b + α-233b). The modest γ-selectivity for the silyl-substituted 225h is explained by a steric rather than an electronic effect because its carbon analogue (R = tBu, not shown) reacted with even worse regioselectivity ($\gamma/\alpha = 62:38$).

As with the above shown copper(I)-mediated reactions, the key feature of the catalytic cycle is a σ-bond metathesis of a copper(I) alkoxy and Me$_2$PhSi–Bpin (25). However, with the present system only the utilization of small OMe (CuOMe) secures smooth Si–B bond activation while sterically hindered OMe (CuOMe) does not catalyze the reaction. Interestingly, added phosphine ligands significantly decreased the reaction rate, providing essentially the same high regioselectivities as under "ligand-free" reaction conditions.
4.5.2. Propargylic Precursors. Besides allylic substrates, propargylic systems also were evaluated in SN2′ reactions. In 2009 Sawamura and co-workers modified the rhodium(I)-catalyzed Si−B transmetalation developed in our group73 and elaborated a practical protocol for the transformation of propargylic carbonates into the corresponding allenylic silanes (Scheme 80).84 Various solvents, e.g., THF, toluene, hexane, and 1,4-dioxane were viable; however, the best results were achieved with dimethylformamide (DMF) or acetone. Similarly to the rhodium(I)-catalyzed conjugate silylation,73 the use of Et3N was indispensable for high conversion. No reaction occurred when silylboronic esters other than Me2PhSi−Bpin (25) were used, e.g., FMe2Si−Bpin (43), (iPrO)Me2Si−Bpin (50), or (Et2N)Me2Si−Bpin (45). With the optimal catalytic system, a range of allenylic silanes with different functional groups was synthesized in good yields (234a−j → 235a−j). Only terminal alkynes (R′ = H, not shown) were not sufficiently reactive, yielding only small quantities or no product at all.

To gain more insight into the stereochemical course of the substitution, the authors performed a reaction with the optically active propargylic carbonate ((S)-234k) followed by a titanium-(IV)-mediated addition of the thus-obtained allenylic silanes ((R)-(235k) to isobutyraldehyde [(S)-234k → (R)-235k → (S,S)-236k, Scheme 81]. Only a negligible erosion of the enantiomeric purity occurred in this sequence (97% ee → 95% ee). On the basis of the observed results, the authors suggested a reaction pathway that involves regioselective 1,2-addition of a Rh−SiMe2Ph complex across the triple bond of ((S)-234k), yielding intermediate XCI and subsequent anti-β-elimination to give allenylic silane (R)-(235k)

Encouraged by the performance of the copper(I)-based catalytic system in allylic transposition reactions, we decided to test the established conditions in propargylic substitutions.85 In accordance with recent related results,86 chloride outcompeted other leaving groups in terms of regioselectivity (237a → γ-243a, Scheme 82, upper). High γ-selectivity was achieved for phosphate (239a → γ-243a + α-244a, γ/α = 90:10), although bromide performed poorly (238a → γ-243a + α-244a, γ/α = 67:33). The remaining common oxygen leaving groups including carbonate gave lower chemical yields while favoring the α-substitution, and this is in contrast to Sawamura’s results84 (240a−242a → γ-243a + α-244a).

Concerning the substrate scope, all aryl- and alkyl-substituted propargylic chlorides were cleanly converted into allenylic silanes (235b−g → γ-243b−g, Scheme 82, lower). As opposed to Sawamura’s investigations, a terminal alkane, i.e., the parent propargylic chloride 237g, was suitable for the transformation (237g → γ-243g). A terminal SiMe3 group, in turn, was detrimental to the γ/α-ratio (237h → γ-243h + α-244h, γ/α = 56:44).

Next, enantiospecific displacements were investigated (Scheme 83, upper). Because α-chiral enantioomerically enriched propargylic chlorides are not available, α-chiral

Scheme 79. Copper(I)-Catalyzed Branched Selective Allylic Substitution

Scheme 80. Rhodium(I)-Catalyzed Regioselective Propargylic Substitution

Scheme 81. Rhodium(I)-Catalyzed Propargylic Substitution with an Enantioenriched Precursor

Scheme 82. Copper(I)-Catalyzed Branched Selective Allylic Substitution

Scheme 83. Copper(I)-Catalyzed Branched Selective Allylic Substitution
phosphates were chosen owing to their easy accessibility and the promising γ/α-ratios. Under the standard protocol, both phenyl- and n-butyl-substituted (S)-245a and (S)-245b, respectively, were converted into the corresponding enantioenriched allenes with high levels of central-to-axial chirality transfer and excellent regiocontrol (S)-245a \rightarrow (R)-γ-246a and (S)-245b \rightarrow (R)-γ-235k.

Apart from that, our protocol is applicable to tertiary propargylic phosphates. Representative substrates underwent the reaction affording the fully substituted allenes in high yields and with superb γ-selectivities ($247 \rightarrow \gamma$-235h and $248 \rightarrow \gamma$-249, Scheme 83, lower).

A conceivable catalytic cycle is depicted in Scheme 84. After the generation of nucleophilic Cu–SiMe$_2$Ph (XXXIX) (LXXI \rightarrow LXXII \rightarrow XXXIX), its syn-selective 1,2-addition across the carbon–carbon triple bond of XCII is followed by an anti-selective β-elimination (XXXIX \rightarrow XCIII \rightarrow XCIV + XCV). This seems reasonable because the stereochemical course (cf. Scheme 83, upper) is identical to that determined by the Savamura group in the rhodium(I)-catalyzed variant (cf. Scheme 81).84 Finally, salt metathesis of [Cu]$^+$–X complex CXV and NaOMe closes the catalytic cycle regenerating LXXI (XCV \rightarrow LXXI).

4.6. Dearomatization of Pyridines and Pyrazine

A new reaction, namely, a pyridine dearomatization, was recently disclosed by Oshima, Ohmura, and Suginome (Scheme 85).87 This palladium(0)-catalyzed process worked well with
Me₃PhSi–Bpin (25) for pyridine (250a) and 3-substituted pyridines (250b–e). The 1,4-addition yielded dihydropyridines 251a–e in excellent yields that were converted into the corresponding silylated pyridines by the reaction with benzaldehyde (not shown). To obtain any conversion with 2-substituted pyridines (252a), the reagent had to be replaced by the more reactive ClMe₂Si–Bpin (42), again yielding the 1,4-addition product in high yield (252 → 253, Scheme 85, lower). However, the presence of a methyl or phenyl substituent in the 4-position steered the silyl group toward the 2-position to afford 1,2-addition (254a → 255a and 254b → 255b, Scheme 86).87

The surprisingly facile dearomatization prompted Ariafard, Yates, and co-workers to investigate the mechanism in detail by quantum-chemical calculations (Scheme 87).88 After oxidative addition of the Si–B bond to the monoligated palladium–phosphine complex XCVI followed by initial coordination of pyridine (XCVII → XCVIII → XCIX), the latter migrates from palladium to boron in a highly endergonic step (XCIX → C). The subsequent dearomatizing insertion of the pyridine into the Pd–B bond (C → CI) is accompanied by the transformation of the dative into a very strong covalent B–N bond that makes this step feasible. The trans-complex CI must isomerize to the two reductive elimination precursors CII and CIII that were found to be in equilibrium. As the reductive elimination is the rate-determining step, electronic and steric effects in the precursors CII and CIII govern the regioselectivity. If the pyridine is not substituted in the 4-position, kinetic as well as thermodynamic effects favor CII, leading to the 1,4-addition (CII → 251a). If the pyridine bears a substituent in the 4-position, CIII is favored due to steric repulsion, leading to the 1,2-addition (CIII → 255, cf. Scheme 86).

A single example of a transition metal-free transformation of pyrazine (256) into silylated 1,4-dihydropyrazine was recently reported by Oshima, Ohmura, and Suginome (256 → 257, Scheme 88).36 The authors propose a mechanism in

Scheme 88. Transition Metal-Free Silaboration of Pyrazine

which one of the nitrogen atoms of 256 coordinates to the boron atom of ClMe₂Si–Bpin (42), thereby activating the Si–B bond to induce migration of the silyl group to the α-carbon atom of 258 (258 → 259). The intermediate 259 (1,2-addition) is believed to undergo a rearrangement to 257 (1,4-addition) accompanied by the formation of a new Si–N bond. Dearomatization is again facilitated by the formation of a strong covalent B–N bond in 257.

5. FUNCTIONALIZATION OF STRAINED-RING COMPOUNDS

5.1. Methylenecyclopropanes

Methylenecyclopropanes (MCPs) are a class of highly reactive compounds displaying diverse reactivity due to substantial ring strain. Potential reactions include 1,2-addition across the C–C double bond, C–C bond cleavage of the distal, or one of the proximal C–C bonds. Suginome, Matsuda, and Ito systematically investigated the reactions of MCPs with Me₃PhSi–Bpin (25) under transition metal catalysis. Early examples had already indicated a significant dependence of the product distribution on the transition metal catalyst, either palladium or platinum (Scheme 89).89 The reaction of phenyl-substituted MCP 260 with Me₃PhSi–Bpin (25) in the presence of a palladium catalyst yielded predominantly E-261 with E alkene geometry whereas a platinum catalyst produced mainly Z-261 (Scheme 89, upper). Diastereodivergence is due to the discrimination between either of the proximal C–C bonds. Another interesting result was obtained in the reaction of annulated MCP 262a (Scheme 89, lower). Employment of a palladium–isocyanide catalyst resulted in proximal C–C bond cleavage, yielding the expected constitutional isomer 263a. When (Ph₃P)₂Pt(C₂H₄) was used as catalyst, however, the silicon atom was connected to carbon atom one position away from the alkene despite proximal C–C bond cleavage (262a → 264a). The authors explained the unexpected outcome by β-hydride elimination from a homoallylic platinum intermediate followed by readdition in opposite orientation (cf. Scheme 31 in section 4.1.2).
Scheme 89. Diastereodivergence through Regioselective Proximal C–C Bond Cleavage

Scheme 90. Selective Distal or Proximal C–C Bond Cleavage

A remarkable observation was made when the same group changed the palladium–isonitrile catalyst to palladium–phosphine or –phosphite catalysts (Scheme 90). Although the platinum catalyst still induced proximal bond cleavage in 265a–c (265a–c → 266a–c), the palladium(0)-catalyzed reactions produced 267a–c exclusively (265a–c → 267a–c), and these are derived from distal C–C bond cleavage (Scheme 90 and Table 2). These examples represent a remarkable transition metal effect on the selectivity, making all the isomers depicted in Table 2 accessible in good yields.

The proposed mechanism of these transformations proceeds via an initial oxidative addition of Me₂PhSi–Bpin (25) to the transition metal (Scheme 91, middle). Subsequently, the proximal (counterclockwise) or the distal (clockwise) C–C bond of the coordinated MCP is cleaved in another oxidative addition, resulting in the metallacyclobutanes CV and CVI with the metal in the oxidation state +IV. The catalytic cycles close by two reductive elimination steps, forming a vinylic C–B bond and then a homoallylic C–Si bond in the proximal case (CV → CVII → 266) and an allylic C–B and then C–Si bond for the distal case (CVI → CVIII → 267), respectively.

The reaction of Me₂PhSi–Bpin (25) with bicyclopropylidene (265d) was described by Pohlmann and de Meijere a decade ago. This palladium(0)-catalyzed process also involved proximal C–C bond cleavage (265d → 268d, Scheme 92). As opposed to known difunctionalization of MCPs, the authors assigned the C–Het connectivities differently. According to comparison of 13C NMR data, the C–Si bond is vinylic and the C–B bond is homoallylic. The suggested mechanism involves a silapalladation of the double bond followed by a cyclol...
propylmethyl-to-homoallyl rearrangement. The C–B bond is formed by the final reductive elimination yielding 268d. This distinct mechanism requires further clarification.

A particularly nice advancement of the palladium(0)-catalyzed silaboration of MCPs was reported by Suginome and co-workers five years ago. meso-MCPs were efficiently desymmetrized employing a chiral palladium catalyst (Scheme 93 and Table 3). A screening of chiral phosphine ligands revealed that the axially chiral monophosphine ligand L9 induced high enantioselectivities and also the use of MePh2Si–Bpin (38) instead of Me2PhSi–Bpin (25) had a positive influence on the reaction rate as well as the selectivity. With this catalytic system the ring-opened products were obtained in moderate to excellent yields and with very good enantiomeric excesses (262b–f → 263b–f). The same group just reported an improved catalytic system for this reaction using polymer-based chiral phosphine ligands. These ligands in combination with Pd(db)2 were superior to the former monomeric phosphines both in terms of catalytic activity and enantioselectivity, affording the analogous products with improved enantiomeric excesses (≤96% ee, not shown).

The laboratory of Suginome introduced another asymmetric silaboration reaction with MCPs, that is, the kinetic resolution of 1-alkyl-2-methylenecyclopropanes (269a–g → 270a–g and 271a–g, Scheme 94). Racemic mixtures of these substituted MCPs were resolved with the aid of a palladium–phosphoramidite catalyst yielding the two different constitutional isomers 270a–g and 271a–g in enantiomerically enriched form (Table 4).

The occurrence of the two constitutional isomers in both enantiomeric forms indicates that this reaction might not be a simple kinetic resolution pathway in which one enantiomer reacts faster in a certain reaction step than the other. It rather resembles a situation where a parallel kinetic resolution is operative in which diastereomeric intermediates [(R)-CX and (S)-CX, Scheme 95] resulting from the reaction of either enantiomer with the B–Pd–Si complex are transformed into different constitutional isomers rather than enantiomers. The initial discrimination of the enantiomers was found not to be very selective (3:2–4:1), but in combination with the subsequent regioselective C–C bond cleavage in favor of the a and a’ bond in (R)-CX and (S)-CX, respectively, high enantioselectivities were obtained for both products. This represents a scholarly example of synergism in two consecutive
asymmetric transformations leading to high selectivities although the individual steps are not particularly selective themselves.

5.2. Vinylcyclopropanes and Vinylcyclobutanes

Double bonds attached to small strained rings do not undergo simple transition metal-catalyzed 1,2-addition of Si–B bonds. Investigations by Suginome, Ito, and co-workers showed that addition reactions involve opening of the strained ring.94 Several vinylcyclopropanes were silaborated in the presence of a nickel(0) catalyst diastereoselectively affording allylic silanes with a homoallylic boryl group (272a–g → 273a–g, Scheme 96, upper). This method was even applicable to trisubstituted alkenes (272d and 272g), albeit in decreased yields. The application of 1,1-dicyclopentylethene resulted in the formation of a mixture of mono- 275 and disilaborated 276, containing two allylic silyl groups (Scheme 96, lower). It must be noted here that Oshima and co-workers had reported a single example of an uncatalyzed silylation of a vinylcyclopropane using the aforementioned borate Me2PhSi−Bpin (81) (not shown).95

A possible reaction mechanism is depicted in Scheme 97.94 Its key feature is the migratory C−C bond cleavage (CXIII → CXIV), which results in the formation of a new C−B bond in the allylnickel complex CXIV. Reductive elimination delivers the silyl group to the terminal position (CXIV → CXV → XXV + 275). It is noteworthy that, in all cases (including R = Me and Ph), a single double-bond isomer was observed. A drawback of the catalytic system is an undesired isomerization of the vinylcyclopropane to cyclopentene, which makes higher substrate loadings necessary to obtain satisfying yields with regard to Me2PhSi−Bpin (25).94

This methodology was further extended to vinylcyclobutanes that showed a similar reactivity.94 The products resulting from the same mechanism with a homologated borylalkyl chain were isolated in good yields (277a–c → 278a–c, Scheme 98). Also in this case, an undesired side-reaction was detected, a nickel(0)-catalyzed double-bond migration of the vinylcyclobutane to the corresponding methylenecyclobutane (not shown).

5.3. Biphenylene

In a series of transformations with biphenylene, Matsuda and Kirikae demonstrated their efficient palladium(0)-catalyzed ring-opening with Me2PhSi−Bpin (25) as well as Et3Si−Bpin (61), leading to difunctionalized biaryls (279 → 280 or 281, Scheme 99).96 The authors proposed a mechanism in which the palladium−phosphine catalyst is involved in two consecutive oxidative additions of the Si−B bond and then the C−C bond.
Scheme 98. Silaboration of Vinylcyclobutanes with C–C Bond Cleavage

Scheme 99. Silaborative C–C Bond Cleavage of Biphenylene

Scheme 100. Proposed Mechanism for the Silaboration of Biphenylene

bond of biphenylene (palladium(0) → CXVI → CXVII, Scheme 100). The palladacycle CXVII collapses by two reductive elimination steps, thereby forming the new C–Si and C–B bonds (CXVII → CXVIII → palladium(0) + 280 or 281).

Scheme 101. (2 + 2 + 1)-Cycloaddition of Oct-1-yne: Ligand Screening

The reaction was general for all amino-substituted silylboronic esters (R′₂N)R₂Si–Bpin (R = Me and Ph and NR′₂ = NEt₂, NMe₂, and pyrrolidino) tested. An extensive screening of phosphine ligands in the reaction with oct-1-yne (66a) using (Et₂N)Me₂Si–Bpin (45) allowed for an increased regioisomeric ratio in favor of the 2,4-silole (rs ≤ 90:10) with sterically demanding and electron-rich phosphines (L). For dec-1-yne, the selectivity was even better (rs = 96:4, not shown).

Similar conditions were applied to aryl-substituted alkynes, yielding 2,4-diarylsiloles as the main products in high yields with generally good to excellent regioselectivities (66h and 66e’–k’, Scheme 102, upper). A Pd(dba)₂/Ph₃P catalyst system facilitated the cycloaddition of electron-rich, electron-poor, and likewise sterically hindered substrates at room temperature. Another feature of this reaction is the possibility to alternatively introduce the Ph₂Si instead of the Me₂Si unit as both silylene precursors 40 and 45 are available (Scheme 102, lower).

Shortly thereafter, this novel concept of generating the palladium–silylene reagent from amino-substituted Si–B precursors was applied to (4 + 1)-cycloaddition with 1,3-dienes to give silacyclopent-3-enes (Scheme 103). Careful catalyst tuning revealed that MePh₂P is the optimal ligand in combination with Pd(dba)₂ for this transformation. Moreover, an excess of the ligand over palladium was crucial for good conversion. As yields of the silacyclopent-3-ene and the aminoborane byproduct significantly under various reaction conditions, the authors suggest that silylene formation and its transfer to the 1,3-diene occur sequentially. Under these optimized conditions, several mono-, di- and trisubstituted buta-1,3-dienes were subjected to the reaction with (Et₂N)Me₂Si–Bpin (45) (Scheme 103, upper). Aryl- and alkyl-substituted as well as functionalized 1,3-dienes underwent the reaction in excellent yields. The silacyclopent-3-ene products could be oxidized with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (or chloranil) to the corresponding siloles, as
shown in one example (109d → 288d → 289d, Scheme 103, lower).

The stereochemical course of the reaction was studied by the employment of two isomers of dodeca-5,7-diene (Scheme 104).97 The E,E-isomer (E,E-109c) led to cis-288c exclusively whereas the E,Z-isomer (E,Z-109c) yielded trans-288c, which is in agreement with a stereospecific reaction expected for a concerted (4 + 1)-cycloaddition. The introduction of diphenylsilylene was nicely showcased in the reaction with buta-1,3-diene (100d) (not shown) and cyclohexa-1,3-diene (103a) (Scheme 105).97 The latter reacted with (Et2N)Ph2Si−Bpin (40) to give 7-silanorbornene (290a) in 88% yield.

Just recently, Masuda, Ohmura, and Suginome transferred this newly developed concept to the (4 + 1)-cycloaddition of 2-vinylindoles (Scheme 106).98 The reaction proceeded as expected for α-styryl-substituted indole 291 and led to the formation of tricyclic product 292. As 292 was not stable on silica gel, it was subsequently oxidized to indole-annulated silole 293. A 292 was not stable on silica gel, it was subsequently oxidized to indole-annulated silole 293, which was isolated in a decent yield. This reaction followed the general mechanism observed for 1,3-dienes before. However, when the α-styryl substituent at the indole was exchanged by a β-styryl substituent, disilylated 295 was obtained as a single diastereomer in excellent yield (294 → 295, Scheme 107).98 Formation of the silacyclopentene unit substituted with a dimethylhydrosilyl group was general for all indoles bearing a linear alkenyl substituent in the 2-position (not shown). In contrast, no reaction was observed for 3-alkenyl-substituted indole 296 (Scheme 107).98

To elucidate the mechanism of this unexpected reaction, deuterated analogues of 294 were prepared and subjected to the established protocol (Scheme 108, upper).98 It turned out that a deuterium atom attached to the β-carbon atom of the styrene substituent remained unaffected during the reaction (297 → 298). Conversely, a deuterium atom installed at the 3-
position of the indole was found to be attached to the exocyclic silicon atom of the target compound (299 → 300). These results prompted the authors to suggest a mechanism in which, after the initial (4 + 1)-cycloaddition, another equivalent of the palladium–silylene complex reacts in an oxidative addition with the silacyclopentene intermediate CXIX, resulting in the allylpalladium–silylene intermediate CXX (CXIX → CXX, Scheme 108, lower). A subsequent conversion of the deuterido(silylene)palladium species CXX into a deuterosilylpalladium intermediate CXXI (CXX → CXXI) is followed by the terminal reductive elimination forming the disilylated product 300 and regenerating the catalyst.

7. FUNCTIONALIZATION OF CARBENOIDS AND RELATED COMPOUNDS

Si–B interelement compounds are reactive toward charged and neutral nucleophiles. The boron atom is the electrophilic site, and nucleophilic attack of a carbon nucleophile at the boron atom releases the silicon atom as a nucleofuge. That reaction is stepwise and proceeds through an ate complex, followed by 1,2-migration of the silicon atom to the boron-substituted carbon atom. If the carbon atom is substituted with an appropriate leaving group, both electrophilic boron and nucleophilic silicon will remain in the molecule, corresponding to a geminal functionalization. That is ideally realized in main group metal carbenooids, and the Shimizu–Hiyama group reported several beautiful transformations on that basis. The idea, however, traces back to a seminal paper by Buynak and Geng where transition metal-free reactions of Me₂PhSi–Bcat (24) and Me₂PhSi–Beg (22) with nucleophiles were investigated. One resonance structure of a diazo compound resembles in a way the carbeneoid situation, that is, a carbanion with a leaving group attached to it; its reaction with 24 yielded a geminally functionalized carbon atom in the α-position of a carboxyl group (301 → 302 → 303, Scheme 109). The same authors also disclosed reactions of 22 with metalated alkenes (not shown) and alkynes (304 → 305 → 306, Scheme 110); the intermediate ate complex is “decomposed” by the addition of iodine with concomitant formation of the C–Si bond.
7.1. Carbenoids

The laboratory of Shimizu and Hiyama began the systematic investigation of carbenoid insertion into Si–B bonds with the geminal functionalization of alkylidene-type carbenoids (307a–h \rightarrow 308a–h, Scheme 111). The carbenoids were generated by either halogen–metal exchange or deprotonation at low temperature. Addition of Me$_2$PhSi–Bpin (25) at that temperature followed by gradual warming to room temperature then afforded 1,1-difunctionalized alkenes; it was shown that the 1,2-migration already occurs above -50°C. The procedure is applicable to a broad spectrum of carbenoid precursors (Table 5), and even E-1,4-dichlorobut-2-ene yielded, after an additional elimination step, targeted buta-1,3-diene as a single diastereomer (307f \rightarrow E-308f, Table 5, entry 6). No erosion of the enantiomeric purity was seen in the reaction of a chiral allylic alcohol (307c \rightarrow Z-308c, Table 5, entry 3). The double-bond geometry of Z-308c corroborates a mechanism that involves “inversion” at the carbenoid carbon atom in the 1,2-migration step as the directed bromide–lithium exchange at 307c is stereoselective.

Application of the above methodology to allylic chlorides was indeed successful (309a–f \rightarrow 310a–f, Scheme 112). Conventional deprotonation with lithium diisopropylamide (LDA) at low temperature formed the intermediate carbenoid. Ate complex formation with Me$_2$PhSi–Bpin (25) was followed by 1,2-migration (1,1-difunctionalization), and no competing 1,4-migration was observed (1,3-difunctionalization). The protocol is general (Table 6), and the double-bond geometry of the allylic substrate is retained in the 1,1-difunctionalized building block (E-309c \rightarrow E-310c and Z-309d \rightarrow Z-310d, Table 6, entries 3 and 4). An interesting variation of the allylic difunctionalization was reported by Murakami (311 \rightarrow 312, Scheme 113). The strained cyclic allylic bromide reacted in reasonable yield and is the only example of an α-substituted allylic halide participating in this reaction.

A particularly nice example was accomplished in an intriguing one-pot sequence (313 \rightarrow 315 \rightarrow 314, Scheme 114). The CF$_3$-substituted carbinol 313 was diastereoselectively transformed into the epoxide-derived carbenoid 315; the usual carbenoid insertion into Me$_2$PhSi–Bpin (25) then generated an intermediate with a geminally functionalized carbon atom. The alkoxide group in the β-position of the silicon atom allowed for a Peterson syn-elimination, furnishing a tetrasubstituted alkene with excellent diastereoselection. The alkene configuration is set at an early stage in the epoxide-forming step and has been rationalized by a lithium–fluorine chelation model.

The ease of the generation of α-oxygen-substituted carbanions through deprotonation of weak C–H acids makes them attractive carbenoid-type intermediates. Aggarwal et al. recently disclosed an enantioselective geminal functionalization on the basis of Hoppe’s asymmetric deprotonation (103 (316a

Table 5. Insertion of Alkylidene Carbenoids into the Si–B Bond

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>metalation</th>
<th>product</th>
<th>yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>nBuLi</td>
<td>THF–EtO (2:1)</td>
<td>308a–h</td>
<td>89</td>
</tr>
</tbody>
</table>

Scheme 111. Geminal Functionalization of Alkylidene-Type Carbenoids

![Scheme 111](image)

Scheme 112. Geminal Functionalization of Allylic Carbenoids

![Scheme 112](image)
and 316b → 317a and 317b, Scheme 115). \(^{104}\) (−)-Sparteine-mediated \(\alpha\)-deprotonation of a carbamate generates an enantiomerically enriched, configurationally stable lithium–carbanion pair; its carbenoid character is then reflected in the electrophilic substitution with Me\(_3\)PhSi–Bpin (25) and subsequent racemization-free 1,2-migration.

Shimizu et al. were later able to extend the geminal functionalization to terminal propargylic precursors with chloride and oxygen leaving groups (318a–g → 319a–g, Scheme 116). \(^{101}\) Metalation of the alkyne terminus forms an intermediate that corresponds to a “vinyllogous” alkylidene-type carbenoid, and 1,2-migration of the silicon atom results in the propargylic displacement of the leaving group. By this, a fair number of terminal alkynes with a propargylic leaving group and with at least one additional substituent at the propargylic carbon atom are transformed into 1,1-difunctionalized allenes (Table 7). Reactions mixtures were usually warmed to room temperature but, for the mesylate, full conversion and higher isolated yield (75% versus 51%) were seen even at \(-78^\circ\text{C}\) with added Me\(_3\)SiCl (318g → 319g, Table 7, entry 7). Me\(_3\)SiCl was proposed to improve the leaving group capability by complexation of the mesyl group. The modified protocol was applied to an enantioselective substitution, but there was partial racemization \([(S)-320 \rightarrow (R)-321, \text{Scheme 117}]^{101}\).

Shimizu et al. also reported a carbenoid insertion approach to trimetalmethanes, that is, methanes with three (different) main group substituents (322 → 323, Scheme 118). \(^{100}\) A fourth main group substituent was introduced by deprotonation and electrophilic substitution with an appropriate electrophile (323 → 324, Scheme 118). By this, a tetrametalmethane was made available in a short synthesis.

7.2. Isonitriles

Prior to the work of Shimizu, Hiyama, and co-workers \(^{33,34,99–101}\) but half a decade after the pioneering investigation of Buynak and Geng, \(^{14}\) Ito and co-workers

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>E/Z ratio</th>
<th>product</th>
<th>E/Z ratio</th>
<th>yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>306a</td>
<td>–</td>
<td>306b</td>
<td>–</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>306b</td>
<td>85:15</td>
<td>316b</td>
<td>83:17</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>306b</td>
<td>> 99:1</td>
<td>316b</td>
<td>> 99:1</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>306b</td>
<td>< 1:99</td>
<td>316b</td>
<td>< 1:99</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>306b</td>
<td>–</td>
<td>316b</td>
<td>–</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>306b</td>
<td>–</td>
<td>316b</td>
<td>–</td>
<td>73</td>
</tr>
</tbody>
</table>
reported the transition metal-free insertion of isonitriles into the Si−B bond of several Si−B compounds (325a−f → 326a−f after borane protection, Scheme 119).105 A large number of isonitriles reacted with Me2PhSi−B(NiPr2)2 (95) at elevated or even room temperature; the (boryl)(silyl)iminomethanes are isolated as their borane complexes (Table 8). The reaction also works with other Si−B compounds, e.g., Me2PhSi−Bpin (25) (325a → 327a, Scheme 120).

Suginome, Fukuda, and Ito observed an interesting skeletal rearrangement when (boryl)(silyl)iminomethane 328a was treated in refluxing toluene (Scheme 121, upper).106 Under these conditions, 1,2-azaboretidine 329a was formed with an appreciable yield of 76% (328a → 329a). In contrast, sterically more congested 328b only afforded traces of the corresponding 1,2-azaboretidine 329b (328b → 329b). A possible pathway for the rearrangement is shown in Scheme 121 (lower). Reversible aza-[1,2]-Brook rearrangement generates the (amino)(boryl)-carbene species 330a (328a → 330a), which subsequently inserts into the C−H bond of the isopropylamino group, forming the azaboretidine ring (330a → 329a).

Chatani and co-workers recently developed a copper(I)-catalyzed indole synthesis involving an isonitrile (331a−c → 332a−c, Scheme 122).107 The catalytic cycle (Scheme 123) of this domino reaction is proposed to begin with an intermolecular silyl transfer from the catalytically generated monosilyl copper(I) reagent XXXIX onto the isocyno group.

Table 7. Insertion of “Vinylogous” Alkylidene Carbenoids into the Si−B Bond

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>product</th>
<th>yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
</tr>
<tr>
<td>2</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
</tr>
<tr>
<td>3</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
</tr>
<tr>
<td>4</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
</tr>
<tr>
<td>5</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
</tr>
<tr>
<td>6</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
</tr>
</tbody>
</table>

Scheme 117. Enantioselective Geminal Functionalization of a Chiral Propargylic Mesylate

Scheme 118. Preparation of a Tri- and a Tetrametalmethane

Scheme 119. Insertion of Isonitriles into the Si−B Bond

Table 8. Insertion of Isonitriles into the Si−B Bond

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>solvent</th>
<th>T [°C]</th>
<th>product</th>
<th>yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Me2PhSi−Bpin (25)</td>
<td>THF</td>
<td>−110 °C → +20 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scheme 120. Variation of the Si−B Compound in the Isonitrile Insertion
(331 + XXXIX → CXXII). Subsequent intramolecular 1,4-addition of the thus-formed imidoyl copper(I) intermediate CXXII yields the indole ring (CXXII → CXXIII). Hydrolysis of copper(I) enolate CXXIII with MeOH libertates the indole tautomer 333 (indolenine) and regenerates the copper(I) methoxide catalyst (CXXIII → 333 → 332 + XXXVI).

8. SUMMARY

After a slow start half a century ago, Si–B chemistry rapidly grew into an independent area of synthetic main group chemistry over the past decade(s). The selective incorporation of both a silicon and a boron atom into an unsaturated molecule in a single synthetic operation is valuable as both newly formed functional groups are extraordinarily versatile linchpins for subsequent (mainly) C–C bond formation. Creative application of the transition metal-catalyzed Si–B bond activation to various classes of unsaturated compounds combined with subtle effects of the ligand or other additives provided unique regio- and diastereodivergent as well as regio- and stereoselective accesses to difunctional building blocks. These are usually difficult to make by more established methods. The portfolio extends not just to oxidative addition/reduction elimination mechanisms but also to transition metal–alkoxide-catalyzed heterolytic activation of the Si–B interelement linkage through transmetalation. By this, a transition metal–silicon reagent forms that transfers the silicon atom to unsaturated molecule as a nucleophile while the boron atom is sacrificed in the transmetalation step. With copper as the transition metal, the net monofunctionalization resembles the chemistry of silicon-based cuprates catalytic in copper, and similar reactivity and selectivity are seen for several acceptors. As to asymmetric transformations, Si–B chemistry is superior to existing methods.

These developments and recent progress in transition metal-free catalyses bode well for the future of this exciting field, and it is not a stretch to predict that organocatalyzed and more enantioselective variants will evolve over the next couple of years.

AUTHOR INFORMATION

Corresponding Author

*E-mail: martin.oestreich@tu-berlin.de.

Notes

The authors declare no competing financial interest.

Biographies
Eduard Hartmann (born 1982 in Uspenka/Kazakhstan) studied chemistry at the Westfälische Wilhelms-Universität Münster (2004–2008) and spent a three-month research internship at HoF (predoctoral fellowship to E.H.), and the NRW Graduate School of Chemistry (predoctoral fellowship to D.J.V.) for generous support throughout the last six years. Dr. Gertrud Auer (Freiburg), Dr. Christian Walter (Freiburg/Münster), Dr. Devendra J. Vyas (Münster), and Dr. Eduard Hartmann (Münster/Berlin) deserve particular mention for their enthusiasm and commitment. M.O. is indebted to the Einstein Foundation (Berlin) for an endowed professorship.

REFERENCES

(5) Hartmann, E.; Vyas, D. J.; Oestreich, M. Chem. Commun. 2011, 47, 7917 (conjugate addition involving Si–B and B–B bond activation).

(9) A. Seyferth et al. also accomplished the preparation of the silicon-substituted borate Li[Ph3Si–BPh3] without heteroatoms at the boron atom: Seyferth, D.; Raab, G.; Grim, S. O. J. Org. Chem. 1961, 26, 3034. Later, Nöth and co-workers reported the synthesis of...

(11) For the preparation of, e.g., H₂Si-B(NMe₂)₃, see: Amberger, E.; Römer, R. Z. Anorg. Anorg. Chem. 1966, 345, 1.

(14) Buynak, J. D.; Geng, B. Organometallics 1995, 14, 3112.

(28) For a tantalum-mediated Si–B bond formation, see: Jiang, Q.; Carroll, P. J.; Berry, D. H. Organometallics 1993, 12, 177.

(75) Hartmann, E.; Oestreich, M. Angew. Chem., Int. Ed. 2010, 49, 6195.
(82) Vyas, D. J.; Oestreich, M. Angew. Chem., Int. Ed. 2010, 49, 8513.
(83) Vyas, D. J.; Oestreich, M. Chem. Commun. 2010, 46, 568.